Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.072
Filtrar
1.
Cell Biochem Biophys ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340281

RESUMO

The model of thylakoid membrane system (T-M model) (Belyaeva et al. Photosynth Res 2019, 140:1-19) has been improved in order to analyze the induction data for dark-adapted samples of algal (Scenedesmus obliques) and cyanobacterial (Synechocystis sp. PCC 6803) cells. The fluorescence induction (FI) curves of Scenedesmus were measured at light exposures of 5 min, while FI and P700 redox transformations of Synechocystis were recorded in parallel for 100 s intervals. Kinetic data comprising the OJIP-SMT fluorescence induction and OABCDEF P700+ absorbance changes were used to study the processes underlying state transitions qT2→1 and qT1→2 associated with the increase/decrease in Chl fluorescence emission. A formula with the Hill kinetics (Ebenhöh et al. Philos Trans R Soc B 2014, 369:20130223) was introduced into the T-M model, with a new variable to imitate the flexible size of antenna AntM(t) associated with PSII. Simulations revealed that the light-harvesting capacity of PSII increases with a corresponding decrease for that of PSI upon the qT2→1 transition induced by plastoquinone (PQ) pool oxidation. The complete T-M model fittings were attained on Scenedesmus or Synechocystis fast waves OJIPS of FI, while SMT wave of FI was reproduced at intervals shorter than 5 min. Also the fast P700 redox transitions (OABC) for Synechocystis were fitted exactly. Reasonable sets of algal and cyanobacterial electron/proton transfer (ET/PT) parameters were found. In the case of Scenedesmus, ET/PT traits remained the same irrespective of modeling with or without qT2→1 transitions. Simulations indicated a high extent (20%) of the PQ pool reduction under dark conditions in Synechocystis compared to 2% in Scenedesmus.

2.
Internet Interv ; 33: 100633, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37635950

RESUMO

Background: LGBTQ+ youth face myriad adverse health outcomes due to minority stress, creating a need for accessible, mechanism-targeted interventions to mitigate these minority stress-related risk factors. We tested the effectiveness and acceptability of Project RISE, an online single-session intervention designed to ameliorate internalized stigma and improve other outcomes among LGBTQ+ youth. We hypothesized that youth assigned to RISE (versus a control) would report significantly reduced internalized stigma and increased identity pride at post-intervention and at two-week follow-up and would find RISE acceptable. Methods: We recruited adolescents nationally through Instagram advertisements in May 2022 (N = 538; M age = 15.06, SD age = 0.97). Participants were randomly assigned to RISE or an information-only control and completed questionnaires pre-intervention, immediately post-intervention, and two weeks post-intervention. Inclusion criteria included endorsing: (1) LGBTQ+ identity, (2) age 13-16, (3) English fluency (4) Internet access, and (5) subjective negative impact of LGBTQ+ stigma. Results: Relative to participants in the control condition, participants who completed RISE reported significant decreases in internalized stigma (d = -0.49) and increases in identity pride (d = 0.25) from pre- to immediately post-intervention, along with decreased internalized stigma (d = -0.26) from baseline to two-week follow-up. Participants rated both RISE and the information-only control as highly, equivalently acceptable. Conclusions: RISE appears to be an acceptable and useful online SSI for LGBTQ+ adolescents, with potential to reduce internalized stigma in both the short- and longer-term. Future directions include evaluating effects of Project RISE over longer follow-ups and in conjunction with other mental health supports.

3.
Biophys Rev ; 14(4): 821-842, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36124273

RESUMO

Monitoring of the photosynthetic activity of natural and artificial biocenoses is of crucial importance. Photosynthesis is the basis for the existence of life on Earth, and a decrease in primary photosynthetic production due to anthropogenic influences can have catastrophic consequences. Currently, great efforts are being made to create technologies that allow continuous monitoring of the state of the photosynthetic apparatus of terrestrial plants and microalgae. There are several sources of information suitable for assessing photosynthetic activity, including gas exchange and optical (reflectance and fluorescence) measurements. The advent of inexpensive optical sensors makes it possible to collect data locally (manually or using autonomous sea and land stations) and globally (using aircraft and satellite imaging). In this review, we consider machine learning methods proposed for determining the functional parameters of photosynthesis based on local and remote optical measurements (hyperspectral imaging, solar-induced chlorophyll fluorescence, local chlorophyll fluorescence imaging, and various techniques of fast and delayed chlorophyll fluorescence induction). These include classical and novel (such as Partial Least Squares) regression methods, unsupervised cluster analysis techniques, various classification methods (support vector machine, random forest, etc.) and artificial neural networks (multilayer perceptron, long short-term memory, etc.). Special aspects of time-series analysis are considered. Applicability of particular information sources and mathematical methods for assessment of water quality and prediction of algal blooms, for estimation of primary productivity of biocenoses, stress tolerance of agricultural plants, etc. is discussed.

4.
Rev Sci Instrum ; 92(11): 113306, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852560

RESUMO

The upcoming commissioning of the superconducting (SC) continuous wave Helmholtz linear accelerators first of series cryomodule is going to demand precise alignment of the four internal SC cavities and two SC solenoids. For optimal results, a beam-based alignment method is used to reduce the misalignment of the whole cryomodule, as well as its individual components. A symmetric beam of low transverse emittance is required for this method, which is to be formed by a collimation system. It consists of two separate plates with milled slits, aligned in the horizontal and vertical direction. The collimation system and alignment measurements are proposed, investigated, and realized. The complete setup of this system and its integration into the existing environment at the GSI High Charge State Injector are presented, as well as the results of the recent reference measurements.

5.
Acta Naturae ; 13(3): 24-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707895

RESUMO

Increasing the efficiency of the photodynamic action of the dyes used in photodynamic therapy is crucial in the field of modern biomedicine. There are two main approaches used to increase the efficiency of photosensitizers. The first one is targeted delivery to the object of photodynamic action, while the second one is increasing the absorption capacity of the molecule. Both approaches can be implemented by producing dye-nanoparticle conjugates. In this review, we focus on the features of the latter approach, when nanoparticles act as a light-harvesting agent and nonradiatively transfer the electronic excitation energy to a photosensitizer molecule. We will consider the hybrid photosensitizer-quantum dot complexes with energy transfer occurring according to the inductive-resonance mechanism as an example. The principle consisting in optimizing the design of hybrid complexes is proposed after an analysis of the published data; the parameters affecting the efficiency of energy transfer and the generation of reactive oxygen species in such systems are described.

6.
Dokl Biochem Biophys ; 498(1): 170-176, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34189644

RESUMO

The spectral-kinetic characteristics of the fluorescence of the tryptophan molecule in an aqueous solution and in the composition of a protein (albumin) were studied in the temperature range from -170 to 25°C. To explain the observed changes in the spectra and the tryptophan fluorescence lifetime with temperature, a model of transitions between the excited and ground states involving a charge-transfer state was used, which takes into account the nonlinear nature of the dynamics of these transitions. In these processes, an important role is played by the interaction of tryptophan molecules with its microenvironment, as well as rearrangements in the system of hydrogen bonds of the water-protein matrix surrounding the tryptophan molecule.


Assuntos
Soroalbumina Bovina/química , Triptofano/química , Água/química , Animais , Bovinos , Fluorescência , Ligação de Hidrogênio , Cinética , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Temperatura , Triptofano/metabolismo , Água/metabolismo
7.
J Eur Acad Dermatol Venereol ; 35(9): 1888-1895, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34014582

RESUMO

BACKGROUND: Due to a large variety in treatment outcomes reported in therapeutic trials and lacking patient-relevant outcomes, it is hard to adequately compare and improve current therapies for patients with capillary malformations (CMs). The Core Outcome Set for Capillary Malformations (COSCAM) project aims to develop a core outcome set (COS) for use in future CM trials, in which we will first develop a core outcome (sub)domain set (CDS). Here, we describe the methods for the development of a CDS and present the results of the first development stage. METHODS: The COSCAM project is carried out according to the recommendations of the Cochrane Skin Core OUtcomes Set INitiative (CS-COUSIN) and the Core Outcome Measures in Effectiveness Trials (COMET) initiative. During the first stage, we identified all potentially relevant outcome subdomains based on a systematic review, two focus group sessions and input from patient representatives of Dutch patient organizations and the COSCAM-founding group. In stage two, we will present the subdomains in a three-round e-Delphi study and online consensus meeting, in which CM patients, parents/caregivers and CM experts worldwide rate the importance of the proposed subdomains, hereby finalizing the core outcome (sub)domains of the CDS. RESULTS: A total of 67 potential outcome subdomains were included; sixteen were previously used in the literature, 20 were proposed by Dutch patients and their parents/caregivers (n = 13) in focus group sessions and 38 were suggested by the experts of the COSCAM-founding group. Seven were excluded because of overlap. CONCLUSION: The final CDS may serve as a minimum standard in future CM trials, thereby facilitating adequate comparison of treatment outcomes. After this CDS development, we will select appropriate outcome measurement instruments to measure the core outcome subdomains.


Assuntos
Avaliação de Resultados em Cuidados de Saúde , Projetos de Pesquisa , Capilares/anormalidades , Técnica Delphi , Determinação de Ponto Final , Humanos , Revisões Sistemáticas como Assunto , Resultado do Tratamento , Malformações Vasculares
8.
J Org Chem ; 86(16): 11269-11276, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33661630

RESUMO

We describe two complementary approaches based on a convergent [4+2] logic toward the synthesis of amorfrutins, cannabinoids, and related plant metabolites. An anionic cascade cyclization employing ß-methoxycrotonates and ß-chloro-α,ß-unsaturated esters yielded amorfrutins in four linear steps and demonstrated utility of ß-alkoxycrotonate-derived nucleophiles as functional equivalents of ß-ketoester-derived dianions. Analogously, tandem Diels-Alder/retro-Diels-Alder cycloaddition of dimedone-derived bis(trimethylsiloxy)-dienes and α,ß-alkynyl ester dienophiles provided facile access to resorcinol precursors of amorfrutins and cannabinoids, avoiding late-stage installation of prenyl or geranyl moieties as in previous approaches.


Assuntos
Ésteres , Polienos , Ciclização , Reação de Cicloadição , Estrutura Molecular
9.
Photosynth Res ; 146(1-3): 259-278, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32734447

RESUMO

Measurements of OJIP-SMT patterns of fluorescence induction (FI) in Synechocystis sp. PCC 6803 (Synechocystis) cells on a time scale up to several minutes were mathematically treated within the framework of thylakoid membrane (T-M) model (Belyaeva et al., Photosynth Res 140:1-19, 2019) that was renewed to account for the state transitions effects. Principles of describing electron transfer in reaction centers of photosystems II and I (PSII and PSI) and cytochrome b6f complex remained unchanged, whereas parameters for dissipative reactions of non-radiative charge recombination were altered depending on the oxidation state of QB-site (neutral, reduced by one electron, empty, reduced by two electrons). According to our calculations, the initial content of plastoquinol (PQH2) in the total quinone pool of Synechocystis cells adapted to darkness for 10 min ranged between 20 and 40%. The results imply that the PQ pool mediates photosynthetic and respiratory charge flows. The redistribution of PBS antenna units responsible for the increase of Chl fluorescence in cyanobacteria (qT2 → 1) upon state 2 → 1 transition or the fluorescence lowering (qT1 → 2) due to state 1 → 2 transition were described in the model by exponential functions. Parameters of dynamically changed effective cross section were found by means of simulations of OJIP-SMT patterns observed on Synechocystis cells upon strong (3000 µmol photons m-2s-1) and moderate (1000 µmol photons m-2s-1) actinic light intensities. The corresponding light constant values kLΣAnt = 1.2 ms-1 and 0.4 ms-1 define the excitation of total antenna pool dynamically redistributed between PSII and PSI reaction centers. Although the OCP-induced quenching of antenna excitation is not involved in the model, the main features of the induction signals have been satisfactorily explained. In the case of strong illumination, the effective cross section decreases by approximately 33% for irradiated Synechocystis cells as compared to untreated cells. Under moderate light, the irradiated Synechocystis cells showed in simulations the same cross section as the untreated cells. The thylakoid model renewed with state transitions description allowed simulation of fluorescence induction OJIP-SMT curves detected on time scale from microseconds to minutes.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/fisiologia , Clorofila/metabolismo , Complexo Citocromos b6f/metabolismo , Escuridão , Transporte de Elétrons , Luz , Oxirredução , Synechocystis/efeitos da radiação , Tilacoides/metabolismo
10.
Org Lett ; 22(17): 6724-6728, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32820938

RESUMO

Few nucleoside-derived natural products have been identified from animals, despite the ubiquity of nucleosides in living organisms. Here, we use a combination of synthesis and the emerging electron microscopy technique microcrystal electron diffraction to determine the structures of several N3-(ß-glucopyranosyl)uric acid derivatives in Caenorhabditis elegans. These noncanonical gluconucleosides further integrate an ascaroside moiety, for which we present a shortened synthetic route. The production of a phosphorylated gluconucleoside is influenced by evolutionarily conserved insulin signaling.


Assuntos
Caenorhabditis elegans/química , Nucleosídeos/química , Ácido Úrico/química , Animais , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nucleosídeos/metabolismo , Transdução de Sinais
12.
Sud Med Ekspert ; 62(2): 26-30, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31213588

RESUMO

This article was designed to report the results of the comprehensive (historical-archival, forensic anthropological, and molecular-genetic) investigation into the holy relics of the righteous martyr Anastasiya of Uglich. The well-reasoned expert conclusion contains the scientifically sound data on the prescription of the martyr's corpse burial, age group and sexual identity of the relics, specific anthropological features of the skeleton, torture instruments, and the immediate cause of death. Taken together, the data thus obtained give evidence that the relics actually belong to one of the well-known saints of the Russian orthodox church.


Assuntos
Antropologia Forense , Santos , Sepultamento , Cadáver , Causas de Morte , Humanos , Esqueleto
13.
Photosynth Res ; 142(1): 57-67, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31098930

RESUMO

Effect of water-soluble and stable sucrose-bound iron oxyhydroxide nanoparticles [Fe[III] sucrose complex (FSC)] on the efficiency of electron transport in the photosystem II membranes was studied. FSC significantly increases (by a factor 1.5) the rate of light-induced oxygen evolution in the presence of alternative electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ). Without DCBQ, FSC only slightly (5%) provides the oxygen evolution. Electron transport supported by pair DCBQ + FSC is inhibited by diuron. Maximum of stimulating effect was recorded at Fe(III) concentration 5 µM. In the case of another benzoquinone electron acceptor (2-phenyl-p-benzoquinone and 2,3-dimethyl-p-benzoquinone) and 2,6-dichlorophenolindophenol, stimulating effect of FSC was not observed. Incubation of PSII membranes at different concentrations with FSC is accompanied by binding of Fe(III) by membrane components but only about 50% of iron can be extracted by membranes from Fe(III) solution at pH 6.5. This result implies the heterogeneity of FSC solution in a buffer. The heterogeneity depends on pH and decreases with its rising. At pH around 9.0 Fe(III), sucrose solution is homogeneous. The study of pH effect has shown that stimulation of electron transport is induced only by iron cations which can be bound by membranes. Not extractable iron pool cannot activate electron transfer from oxygen-evolving complex to DCBQ.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Compostos Férricos/farmacologia , Nanopartículas/química , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Solubilidade , Spinacia oleracea/metabolismo , Sacarose/química , Tilacoides/metabolismo
14.
Dokl Biochem Biophys ; 484(1): 21-24, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31012005

RESUMO

The temperature dependence of the efficiency of energy migration from the CdSe/CdS/ZnS quantum dots (QDs) with a fluorescence maximum at 580 nm to the reaction centers (RCs) of the bacteria Rb. sphaeroides is practically constant over the temperature range from 100 to ~230-240 K but then decreases 2.5-3 times as temperature further increases to 310 K. The analysis on this dependence on the basis of Förster's theory showed that the major changes in the energy transfer efficiency are associated with the temperature change in the quantum yield of QD fluorescence, which is due to the activation of intramolecular mobility in the RC structure.


Assuntos
Fluorescência , Modelos Químicos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Pontos Quânticos/química , Rhodobacter sphaeroides/enzimologia
15.
Photosynth Res ; 140(1): 1-19, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30810971

RESUMO

The dark-to-light transitions enable energization of the thylakoid membrane (TM), which is reflected in fast and slow (OJIPSMT or OABCDE) stages of fluorescence induction (FI) and P700 oxidoreduction changes (ΔA810). A Thylakoid Membrane model (T-M model), in which special emphasis has been placed on ferredoxin-NADP+-oxidoreductase (FNR) activation and energy-dependent qE quenching, was applied for quantifying the kinetics of FI and ΔA810. Pea leaves were kept in darkness for 15 min and then the FI and ΔA810 signals were measured upon actinic illumination, applied either directly or after a 10-s light pulse coupled with a subsequent 10-s dark interval. On the time scale from 40 µs to 30 s, the parallel T-M model fittings to both FI and ΔA810 signals were obtained. The parameters of FNR activation and the buildup of qE quenching were found to differ for dark-adapted and preilluminated leaves. At the onset of actinic light, photosystem II (PSII) acceptors were oxidized (neutral) after dark adaptation, while the redox states with closed and/or semiquinone QA(-)QB(-) forms were supposedly generated after preillumination, and did not relax within the 10 s dark interval. In qE simulations, a pH-dependent Hill relationship was used. The rate constant of heat losses in PSII antenna kD(t) was found to increase from the basic value kDconst, at the onset of illumination, to its maximal level kDvar due to lumenal acidification. In dark-adapted leaves, a low value of kDconst of ∼ 2 × 106 s-1 was found. Simulations on the microsecond to 30 s time scale revealed that the slow P-S-M-T phases of the fluorescence induction were sensitive to light-induced FNR activation and high-energy qE quenching. Thus, the corresponding time-dependent rate constants kD(t) and kFNR(t) change substantially upon the release of electron transport on the acceptor side of PSI and during the NPQ development. The transitions between the cyclic and linear electron transport modes have also been quantified in this paper.


Assuntos
Clorofila A/metabolismo , Clorofila/metabolismo , Pisum sativum/metabolismo , Tilacoides/metabolismo , Adaptação Fisiológica , Escuridão , Transporte de Elétrons , Elétrons , Fluorescência , Cinética , Luz , Oxirredução , Pisum sativum/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
16.
J Photochem Photobiol B ; 187: 170-179, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30170287

RESUMO

Enhancement of optical properties of photosensitizers by additional light-harvesting antennas is promising for the improvement of the photodynamic therapy. However, large number of parameters determine interactions of nanoparticles and photosensitizers in complex and, thus the photodynamic efficacy of the hybrid structure. In order to achieve high efficiency of energetic coupling and photodynamic activity of such complexes it is important to know the location of the photosensitizer molecule on the nanoparticle, because it affects the spectral properties of the photosensitizer and the stability of the hybrid complex in vitro/in vivo. In this work complexes of polycationic aluminum phthalocyanines and CdSe/ZnS quantum dots were obtained. We used quantum dots which outer shell consists of polymer with carboxyl groups and provides water solubility and the negative charge of the nanoparticle. We found that phthalocyanine molecules could penetrate deeply into the polymer shell of quantum dot, leading thereby to significant changes in the spectral and photodynamic properties of phthalocyanines. We also showed that noncovalent interactions between phthalocyanine and quantum dot provide possibility for a release of the phthalocyanine from the hybrid complex and its binding to both Gram-positive and Gram-negative bacterial cells. Also, detailed characterization of the nanoparticle core and shell sizes was carried out.


Assuntos
Portadores de Fármacos/química , Indóis/química , Compostos Organometálicos/química , Pontos Quânticos/química , Compostos de Cádmio/química , Transferência Ressonante de Energia de Fluorescência , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indóis/farmacologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Compostos Organometálicos/farmacologia , Compostos de Selênio/química , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Sulfetos/química , Compostos de Zinco/química
17.
Photosynth Res ; 138(2): 191-206, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30062532

RESUMO

A model of primary photosynthetic reactions in the thylakoid membrane was developed and its validity was tested by simulating three types of experimental kinetic curves: (1) the light-induced chlorophyll a fluorescence rise (OJIP transients) reflecting the stepwise transition of the photosynthetic electron transport chain from the oxidized to the fully reduced state; (2) the dark relaxation of the flash-induced fluorescence yield attributed to the QA- oxidation kinetics in PSII; and (3) the light-induced absorbance changes near 820 or 705 nm assigned to the redox transitions of P700 in PSI. A model was implemented by using a rule-based kinetic Monte-Carlo method and verified by simulating experimental curves under different treatments including photosynthetic inhibitors, heat stress, anaerobic conditions, and very high light intensity.


Assuntos
Clorofila/fisiologia , Simulação por Computador , Método de Monte Carlo , Fototaxia/fisiologia , Tilacoides/fisiologia , Transporte de Elétrons , Fluorescência , Cinética , Modelos Biológicos , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II
18.
J Photochem Photobiol B ; 178: 192-200, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156347

RESUMO

Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H2Q action, since H2Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H2Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O2 at a low rate in the presence of exogenous Ca2+ (at about 27% of the rate of O2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O2 by the 3Mn/1Fe cluster or apparent O2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes) is discussed.


Assuntos
Compostos Ferrosos/química , Manganês/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/metabolismo , Cálcio/química , Cátions/química , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Oxirredução , Spinacia oleracea/metabolismo , Água/química
19.
Sci Rep ; 7(1): 15548, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138423

RESUMO

The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCPO state to the red active signaling state, OCPR, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCPO suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCPR. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCPR to OCPO. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Ficobilissomas/química , Synechocystis/química , Proteínas de Bactérias/genética , Carotenoides/efeitos da radiação , Cristalografia por Raios X , Cinética , Lasers , Luz , Modelos Moleculares , Ficobilissomas/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Espectrometria de Fluorescência , Synechocystis/genética
20.
Rev Sci Instrum ; 88(9): 093901, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964230

RESUMO

Glass formation and glassy behavior remain as the important areas of investigation in soft matter physics with many aspects which are still not completely understood, especially at the nanometer size-scale. In the present work, we show an extension of the "nanobubble inflation" method developed by O'Connell and McKenna [Rev. Sci. Instrum. 78, 013901 (2007)] which uses an interferometric method to measure the topography of a large array of 5 µm sized nanometer thick films subjected to constant inflation pressures during which the bubbles grow or creep with time. The interferometric method offers the possibility of making measurements on multiple bubbles at once as well as having the advantage over the AFM methods of O'Connell and McKenna of being a true non-contact method. Here we demonstrate the method using ultra-thin films of both poly(vinyl acetate) (PVAc) and polystyrene (PS) and discuss the capabilities of the method relative to the AFM method, its advantages and disadvantages. Furthermore we show that the results from experiments on PVAc are consistent with the prior work on PVAc, while high stress results with PS show signs of a new non-linear response regime that may be related to the plasticity of the ultra-thin film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...