Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Comp Neurol ; 532(2): e25592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362770
2.
J Comp Neurol ; 531(16): 1715-1750, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695031

RESUMO

The globus pallidus (GP) of primates is divided conventionally into distinct internal and external parts. The literature repeats since 1930 the opinion that the homolog of the primate internal pallidum in rodents is the hypothalamic entopeduncular nucleus (embedded within fiber tracts of the cerebral peduncle). To test this idea, we explored its historic fundaments, checked the development and genoarchitecture of mouse entopeduncular and pallidal neurons, and examined relevant comparative connectivity data. We found that the extratelencephalic mouse entopeduncular structure consists of four different components arrayed along a dorsoventral sequence in the alar hypothalamus. The ventral entopeduncular nucleus (EPV), with GABAergic neurons expressing Dlx5&6 and Nkx2-1, lies within the hypothalamic peduncular subparaventricular area. Three other formations-the dorsal entopeduncular nucleus (EPD), the prereticular entopeduncular nucleus (EPPRt ), and the preeminential entopeduncular nucleus (EPPEm )-lie within the overlying paraventricular area, under the subpallium. EPD contains glutamatergic neurons expressing Tbr1, Otp, and Pax6. The EPPRt has GABAergic cells expressing Isl1 and Meis2, whereas the EPPEm population expresses Foxg1 and may be glutamatergic. Genoarchitectonic observations on relevant areas of the mouse pallidal/diagonal subpallium suggest that the GP of rodents is constituted as in primates by two adjacent but molecularly and hodologically differentiable telencephalic portions (both expressing Foxg1). These and other reported data oppose the notion that the rodent extratelencephalic entopeduncular nucleus is homologous to the primate internal pallidum. We suggest instead that all mammals, including rodents, have dual subpallial GP components, whereas primates probably also have a comparable set of hypothalamic entopeduncular nuclei. Remarkably, there is close similarity in some gene expression properties of the telencephalic internal GP and the hypothalamic EPV. This apparently underlies their notable functional analogy, sharing GABAergic neurons and thalamopetal connectivity.


Assuntos
Globo Pálido , Roedores , Animais , Camundongos , Núcleo Entopeduncular , Hipotálamo , Primatas , Neurônios GABAérgicos , Fatores de Transcrição/genética , Proteínas do Tecido Nervoso , Fatores de Transcrição Forkhead
3.
Dev Biol ; 503: 10-24, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37532091

RESUMO

The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are involved in control of action. Changes in the firing of GPe neurons are associated with both passive and active body movements. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson's Disease, Huntington's disease and dystonia. Recent studies have helped delineate functionally distinct subtypes of GABAergic GPe projection neurons. However, not much is known about specific molecular mechanisms underlying the development of GPe neuronal subtypes. We show that the transcriptional regulator Lmo3 is required for the development of medial ganglionic eminence derived Nkx2.1+ and PV+ GPe neurons, but not lateral ganglionic eminence derived FoxP2+ neurons. As a consequence of the reduction in PV+ neurons, Lmo3-null mice have a reduced GPe input to the subthalamic nucleus.


Assuntos
Neurônios GABAérgicos , Globo Pálido , Proteínas com Domínio LIM , Movimento , Animais , Camundongos , Neurônios GABAérgicos/metabolismo , Globo Pálido/metabolismo , Camundongos Knockout , Movimento/fisiologia , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
4.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425940

RESUMO

Transcription factors (TFs) bind combinatorially to genomic cis-regulatory elements (cREs), orchestrating transcription programs. While studies of chromatin state and chromosomal interactions have revealed dynamic neurodevelopmental cRE landscapes, parallel understanding of the underlying TF binding lags. To elucidate the combinatorial TF-cRE interactions driving mouse basal ganglia development, we integrated ChIP-seq for twelve TFs, H3K4me3-associated enhancer-promoter interactions, chromatin and transcriptional state, and transgenic enhancer assays. We identified TF-cREs modules with distinct chromatin features and enhancer activity that have complementary roles driving GABAergic neurogenesis and suppressing other developmental fates. While the majority of distal cREs were bound by one or two TFs, a small proportion were extensively bound, and these enhancers also exhibited exceptional evolutionary conservation, motif density, and complex chromosomal interactions. Our results provide new insights into how modules of combinatorial TF-cRE interactions activate and repress developmental expression programs and demonstrate the value of TF binding data in modeling gene regulatory wiring.

5.
Mol Neurobiol ; 60(2): 687-731, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36357614

RESUMO

The lateral hypothalamus (LH) has a heterogeneous cytoarchitectonic organization that has not been elucidated in detail. In this work, we analyzed within the framework of the prosomeric model the differential expression pattern of 59 molecular markers along the ventrodorsal dimension of the medial forebrain bundle in the mouse, considering basal and alar plate subregions of the LH. We found five basal (LH1-LH5) and four alar (LH6-LH9) molecularly distinct sectors of the LH with neuronal cell groups that correlate in topography with previously postulated alar and basal hypothalamic progenitor domains. Most peptidergic populations were restricted to one of these LH sectors though some may have dispersed into a neighboring sector. For instance, histaminergic Hdc-positive neurons were mostly contained within the basal LH3, Nts (neurotensin)- and Tac2 (tachykinin 2)-expressing cells lie strictly within LH4, Hcrt (hypocretin/orexin)-positive and Pmch (pro-melanin-concentrating hormone)-positive neurons appeared within separate LH5 subdivisions, Pnoc (prepronociceptin)-expressing cells were mainly restricted to LH6, and Sst (somatostatin)-positive cells were identified within the LH7 sector. The alar LH9 sector, a component of the Foxg1-positive telencephalo-opto-hypothalamic border region, selectively contained Satb2-expressing cells. Published studies of rodent LH subdivisions have not described the observed pattern. Our genoarchitectonic map should aid in systematic approaches to elucidate LH connectivity and function.


Assuntos
Região Hipotalâmica Lateral , Neuropeptídeos , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Orexinas/metabolismo , Neuropeptídeos/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Forkhead/metabolismo
6.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695185

RESUMO

In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.


Assuntos
Proteínas de Homeodomínio , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Diferenciação Celular/genética , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(15): e2108760119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377797

RESUMO

Enhancers integrate transcription factor signaling pathways that drive cell fate specification in the developing brain. We paired enhancer labeling and single-cell RNA-sequencing (scRNA-seq) to delineate and distinguish specification of neuronal lineages in mouse medial, lateral, and caudal ganglionic eminences (MGE, LGE, and CGE) at embryonic day (E)11.5. We show that scRNA-seq clustering using transcription factors improves resolution of regional and developmental populations, and that enhancer activities identify specific and overlapping GE-derived neuronal populations. First, we mapped the activities of seven evolutionarily conserved brain enhancers at single-cell resolution in vivo, finding that the selected enhancers had diverse activities in specific progenitor and neuronal populations across the GEs. We then applied enhancer-based labeling, scRNA-seq, and analysis of in situ hybridization data to distinguish transcriptionally distinct and spatially defined subtypes of MGE-derived GABAergic and cholinergic projection neurons and interneurons. Our results map developmental origins and specification paths underlying neurogenesis in the embryonic basal ganglia and showcase the power of scRNA-seq combined with enhancer-based labeling to resolve the complex paths of neuronal specification underlying mouse brain development.


Assuntos
Gânglios da Base , Neurônios Colinérgicos , Elementos Facilitadores Genéticos , Neurônios GABAérgicos , Neurogênese , Animais , Gânglios da Base/citologia , Gânglios da Base/embriologia , Linhagem da Célula/genética , Neurônios Colinérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Neurogênese/genética , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Neurodev Disord ; 14(1): 11, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123407

RESUMO

BACKGROUND: Tbr1 encodes a T-box transcription factor and is considered a high confidence autism spectrum disorder (ASD) gene. Tbr1 is expressed in the postmitotic excitatory neurons of the deep neocortical layers 5 and 6. Postnatally and neonatally, Tbr1 conditional mutants (CKOs) have immature dendritic spines and reduced synaptic density. However, an understanding of Tbr1's function in the adult mouse brain remains elusive. METHODS: We used conditional mutagenesis to interrogate Tbr1's function in cortical layers 5 and 6 of the adult mouse cortex. RESULTS: Adult Tbr1 CKO mutants have dendritic spine and synaptic deficits as well as reduced frequency of mEPSCs and mIPSCs. LiCl, a WNT signaling agonist, robustly rescues the dendritic spine maturation, synaptic defects, and excitatory and inhibitory synaptic transmission deficits. CONCLUSIONS: LiCl treatment could be used as a therapeutic approach for some cases of ASD with deficits in synaptic transmission.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Neurogênese/fisiologia , Neurônios , Transmissão Sináptica , Proteínas com Domínio T/genética , Fatores de Transcrição
9.
Genome Med ; 13(1): 135, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425903

RESUMO

BACKGROUND: Genetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The mRNA splicing patterns of all four genes vary across development in the rodent brain, including mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A). We aimed to quantify the expression of individual exons in the developing human brain. METHODS: RNA-seq data from 783 human brain samples across development were analyzed to estimate exon-level expression. Developmental changes in exon utilization were validated by assessing intron splicing. Exon expression was also estimated in RNA-seq data from 58 developing mouse neocortical samples. RESULTS: In the mature human neocortex, exon 5A is consistently expressed at least 4-fold higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A, a brain-wide synchronized 5N to 5A transition occurs between 24 post-conceptual weeks (2nd trimester) and 6 years of age. In mice, the equivalent 5N to 5A transition begins at or before embryonic day 15.5. In SCN8A, over 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development, most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons showed comparably dynamic developmental trajectories. CONCLUSIONS: Exon usage in SCN1A, SCN2A, SCN3A, and SCN8A changes dramatically during human brain development. These splice isoforms, which alter the biophysical properties of the encoded channels, may account for some of the observed phenotypic differences across development and between specific variants. Manipulation of the proportion of splicing isoforms at appropriate stages of development may act as a therapeutic strategy for specific mutations or even epilepsy in general.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Canais de Sódio Disparados por Voltagem/genética , Processamento Alternativo , Animais , Biomarcadores , Córtex Cerebral , Suscetibilidade a Doenças , Éxons , Humanos , Íntrons , Camundongos , Família Multigênica , Fases de Leitura Aberta , Polimorfismo Genético , Ligação Proteica , Locos de Características Quantitativas , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
10.
Nat Genet ; 53(4): 521-528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782603

RESUMO

Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays. Overall, we find that the regulatory properties of ultraconserved enhancers are robust to mutation. Upon mutagenesis, nearly all (19/23, 83%) still functioned as enhancers at one developmental stage, as did most of those tested again later in development (5/9, 56%). Replacement of endogenous enhancers with mutated alleles in mice corroborated results of transgenic assays, including the functional resilience of ultraconserved enhancers to mutation. Our findings show that the currently known activities of ultraconserved enhancers do not necessarily require the perfect conservation observed in evolution and suggest that additional regulatory or other functions contribute to their sequence constraint.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Fatores de Transcrição/genética , Alelos , Animais , Sequência de Bases , Sequência Conservada , Embrião de Mamíferos , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Ratos , Fatores de Transcrição/metabolismo
11.
Commun Biol ; 4(1): 95, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479483

RESUMO

GABAergic neurons of the hypothalamus regulate many innate behaviors, but little is known about the mechanisms that control their development. We previously identified hypothalamic neurons that express the LIM homeodomain transcription factor Lhx6, a master regulator of cortical interneuron development, as sleep-promoting. In contrast to telencephalic interneurons, hypothalamic Lhx6 neurons do not undergo long-distance tangential migration and do not express cortical interneuronal markers such as Pvalb. Here, we show that Lhx6 is necessary for the survival of hypothalamic neurons. Dlx1/2, Nkx2-2, and Nkx2-1 are each required for specification of spatially distinct subsets of hypothalamic Lhx6 neurons, and that Nkx2-2+/Lhx6+ neurons of the zona incerta are responsive to sleep pressure. We further identify multiple neuropeptides that are enriched in spatially segregated subsets of hypothalamic Lhx6 neurons, and that are distinct from those seen in cortical neurons. These findings identify common and divergent molecular mechanisms by which Lhx6 controls the development of GABAergic neurons in the hypothalamus.


Assuntos
Diferenciação Celular , Neurônios GABAérgicos/fisiologia , Redes Reguladoras de Genes , Hipotálamo/citologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sobrevivência Celular , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Camundongos , Proteínas Nucleares , Sono/fisiologia
12.
J Comp Neurol ; 529(2): 367-420, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32420617

RESUMO

We present here a thorough and complete analysis of mouse P0-P140 prethalamic histogenetic subdivisions and corresponding nuclear derivatives, in the context of local tract landmarks. The study used as fundamental material brains from a transgenic mouse line that expresses LacZ under the control of an intragenic enhancer of Dlx5 and Dlx6 (Dlx5/6-LacZ). Subtle shadings of LacZ signal, jointly with pan-DLX immunoreaction, and several other ancillary protein or RNA markers, including Calb2 and Nkx2.2 ISH (for the prethalamic eminence, and derivatives of the rostral zona limitans shell domain, respectively) were mapped across the prethalamus. The resulting model of the prethalamic region postulates tetrapartite rostrocaudal and dorsoventral subdivisions, as well as a tripartite radial stratification, each cell population showing a characteristic molecular profile. Some novel nuclei are proposed, and some instances of potential tangential cell migration were noted.


Assuntos
Mapeamento Cromossômico/métodos , Proteínas de Homeodomínio/genética , Óperon Lac/genética , Tálamo/embriologia , Animais , Animais Recém-Nascidos , Feminino , Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Peixe-Zebra
13.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33199411

RESUMO

Cortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species. An alternative approach is to use viral vectors such as AAV, which can be used in multiple species including primates and also have potential for therapeutic use in humans. Thus, we sought to discover gene regulatory enhancer elements (REs) that can be used in viral vectors to drive expression in specific cell types. The present study describes the systematic genome-wide identification of putative REs (pREs) that are preferentially active in immature CINs by histone modification chromatin immunoprecipitation and sequencing (ChIP-seq). We evaluated two novel pREs in AAV vectors, alongside the well-established Dlx I12b enhancer, and found that they drove CIN-specific reporter expression in adult mice. We also showed that the identified Arl4d pRE could drive sufficient expression of channelrhodopsin for optogenetic rescue of behavioral deficits in the Dlx5/6+/- mouse model of fast-spiking CIN dysfunction.


Assuntos
Transtorno Autístico , Interneurônios , Elementos Reguladores de Transcrição , Esquizofrenia , Animais , Animais Geneticamente Modificados , Dependovirus , Vetores Genéticos , Camundongos , Fatores de Transcrição
14.
Cell Rep ; 31(2): 107495, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294447

RESUMO

Tbr1 is a high-confidence autism spectrum disorder (ASD) gene encoding a transcription factor with distinct pre- and postnatal functions. Postnatally, Tbr1 conditional knockout (CKO) mutants and constitutive heterozygotes have immature dendritic spines and reduced synaptic density. Tbr1 regulates expression of several genes that underlie synaptic defects, including a kinesin (Kif1a) and a WNT-signaling ligand (Wnt7b). Furthermore, Tbr1 mutant corticothalamic neurons have reduced thalamic axonal arborization. LiCl and a GSK3ß inhibitor, two WNT-signaling agonists, robustly rescue the dendritic spines and the synaptic and axonal defects, suggesting that this could have relevance for therapeutic approaches in some forms of ASD.


Assuntos
Espinhas Dendríticas/metabolismo , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/metabolismo , Espinhas Dendríticas/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Tálamo/metabolismo , Via de Sinalização Wnt/genética
15.
Neuron ; 106(1): 37-65.e5, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32027825

RESUMO

The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.


Assuntos
Marcação de Genes/métodos , Integrases/genética , Neurônios/metabolismo , Oócitos/metabolismo , Recombinação Genética/genética , Espermatozoides/metabolismo , Animais , Feminino , Genes Reporter , Células Germinativas , Masculino , Camundongos , Camundongos Transgênicos , Mosaicismo
16.
Cell Rep ; 29(6): 1419-1428.e5, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693884

RESUMO

One long-standing model of striatal function divides the striatum into compartments called striosome and matrix. While some anatomical evidence suggests that these populations represent distinct striatal pathways with differing inputs and outputs, functional investigation has been limited by the methods for identifying and manipulating these populations. Here, we utilize hs599CreER mice as a new tool for targeting striosome projection neurons and testing their functional connectivity. Extending anatomical work, we demonstrate that striosome neurons receive greater synaptic input from prelimbic cortex, whereas matrix neurons receive greater input from primary motor cortex. We also identify functional differences in how striosome and matrix neurons process excitatory input, providing the first electrophysiological method for delineating striatal output neuron subtypes. Lastly, we provide the first functional demonstration that striosome neurons are the predominant striatal output to substantia nigra pars compacta dopamine neurons. These results identify striosome and matrix as functionally distinct striatal pathways.


Assuntos
Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/fisiologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Neurogênese , Córtex Pré-Frontal/fisiologia , Animais , Corpo Estriado/embriologia , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Transgênicos , Córtex Motor/citologia , Córtex Motor/metabolismo , Neurogênese/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Substância Negra/citologia , Substância Negra/metabolismo , Substância Negra/fisiologia
17.
Cell Rep ; 28(8): 2048-2063.e8, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433982

RESUMO

DLX transcription factors (TFs) are master regulators of the developing vertebrate brain, driving forebrain GABAergic neuronal differentiation. Ablation of Dlx1&2 alters expression of genes that are critical for forebrain GABAergic development. We integrated epigenomic and transcriptomic analyses, complemented with in situ hybridization (ISH), and in vivo and in vitro studies of regulatory element (RE) function. This revealed the DLX-organized gene regulatory network at genomic, cellular, and spatial levels in mouse embryonic basal ganglia. DLX TFs perform dual activating and repressing functions; the consequences of their binding were determined by the sequence and genomic context of target loci. Our results reveal and, in part, explain the paradox of widespread DLX binding contrasted with a limited subset of target loci that are sensitive at the epigenomic and transcriptomic level to Dlx1&2 ablation. The regulatory properties identified here for DLX TFs suggest general mechanisms by which TFs orchestrate dynamic expression programs underlying neurodevelopment.


Assuntos
Neurônios GABAérgicos/metabolismo , Redes Reguladoras de Genes , Genoma , Proteínas de Homeodomínio/metabolismo , Prosencéfalo/embriologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Camundongos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reprodutibilidade dos Testes
18.
Mol Psychiatry ; 24(9): 1248-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31089192

RESUMO

In 2003 Rubenstein and Merzenich hypothesized that some forms of Autism (ASD) might be caused by a reduction in signal-to-noise in key neural circuits, which could be the result of changes in excitatory-inhibitory (E-I) balance. Here, we have clarified the concept of E-I balance, and updated the original hypothesis in light of the field's increasingly sophisticated understanding of neuronal circuits. We discuss how specific developmental mechanisms, which reduce inhibition, affect cortical and hippocampal functions. After describing how mutations of some ASD genes disrupt inhibition in mice, we close by suggesting that E-I balance represents an organizing framework for understanding findings related to pathophysiology and for identifying appropriate treatments.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Rede Nervosa/fisiologia , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Humanos , Inibição Psicológica , Transtornos Mentais/fisiopatologia , Camundongos , Neurônios/fisiologia
19.
Cell Rep ; 26(5): 1157-1173.e5, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699346

RESUMO

Mafb and c-Maf transcription factor (TF) expression is enriched in medial ganglionic eminence (MGE) lineages, beginning in late-secondary progenitors and continuing into mature parvalbumin (PV+) and somatostatin (SST+) interneurons. However, the functions of Maf TFs in MGE development remain to be elucidated. Herein, Mafb and c-Maf were conditionally deleted, alone and together, in the MGE and its lineages. Analyses of Maf mutant mice revealed redundant functions of Mafb and c-Maf in secondary MGE progenitors, where they repress the generation of SST+ cortical and hippocampal interneurons. By contrast, Mafb and c-Maf have distinct roles in postnatal cortical interneuron (CIN) morphological maturation, synaptogenesis, and cortical circuit integration. Thus, Mafb and c-Maf have redundant and opposing functions at different steps in CIN development.


Assuntos
Linhagem da Célula , Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Fator de Transcrição MafB/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Apoptose , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Hipocampo/metabolismo , Eminência Mediana/metabolismo , Camundongos Knockout , Neuritos/metabolismo , Neurogênese , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Sinapses/metabolismo
20.
Neuron ; 100(4): 831-845.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30318412

RESUMO

An understanding of how heterozygous loss-of-function mutations in autism spectrum disorder (ASD) risk genes, such as TBR1, contribute to ASD remains elusive. Conditional Tbr1 deletion during late mouse gestation in cortical layer 6 neurons (Tbr1layer6 mutants) provides novel insights into its function, including dendritic patterning, synaptogenesis, and cell-intrinsic physiology. These phenotypes occur in heterozygotes, providing insights into mechanisms that may underlie ASD pathophysiology. Restoring expression of Wnt7b largely rescues the synaptic deficit in Tbr1layer6 mutant neurons. Furthermore, Tbr1layer6 heterozygotes have increased anxiety-like behavior, a phenotype seen ASD. Integrating TBR1 chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) data from layer 6 neurons and activity of TBR1-bound candidate enhancers provides evidence for how TBR1 regulates layer 6 properties. Moreover, several putative TBR1 targets are ASD risk genes, placing TBR1 in a central position both for ASD risk and for regulating transcriptional circuits that control multiple steps in layer 6 development essential for the assembly of neural circuits.


Assuntos
Proteínas de Ligação a DNA/genética , Dosagem de Genes/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas de Ligação a DNA/biossíntese , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/química , Rede Nervosa/química , Proteínas com Domínio T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...