Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 365(6456): 903-906, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31467218

RESUMO

The composition of Earth's atmosphere depends on the redox state of the mantle, which became more oxidizing at some stage after Earth's core started to form. Through high-pressure experiments, we found that Fe2+ in a deep magma ocean would disproportionate to Fe3+ plus metallic iron at high pressures. The separation of this metallic iron to the core raised the oxidation state of the upper mantle, changing the chemistry of degassing volatiles that formed the atmosphere to more oxidized species. Additionally, the resulting gradient in redox state of the magma ocean allowed dissolved CO2 from the atmosphere to precipitate as diamond at depth. This explains Earth's carbon-rich interior and suggests that redox evolution during accretion was an important variable in determining the composition of the terrestrial atmosphere.

2.
Phys Rev Lett ; 119(21): 215701, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219420

RESUMO

The convection or settling of matter in the deep Earth's interior is mostly constrained by density variations between the different reservoirs. Knowledge of the density contrast between solid and molten silicates is thus of prime importance to understand and model the dynamic behavior of the past and present Earth. SiO_{2} is the main constituent of Earth's mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO_{2} glass up to 110 GPa, doubling the pressure range for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO_{2} minerals above 60 GPa. The density data present two discontinuities at ∼17 and ∼60 GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO_{2} glass becomes denser than MgSiO_{3} glass at ∼40 GPa, and its density becomes identical to that of MgSiO_{3} glass above 80 GPa. Our results on SiO_{2} glass may suggest that a variation of SiO_{2} content in a basaltic or pyrolitic melt with pressure has at most a minor effect on the final melt density, and iron partitioning between the melts and residual solids is the predominant factor that controls melt buoyancy in the lowermost mantle.

3.
Science ; 353(6304): 1141-4, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27609889

RESUMO

Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth's core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the "Hadean matte") stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

4.
Science ; 351(6272): 493-6, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823426

RESUMO

Earth and the Moon are shown here to have indistinguishable oxygen isotope ratios, with a difference in Δ'(17)O of -1 ± 5 parts per million (2 standard error). On the basis of these data and our new planet formation simulations that include a realistic model for primordial oxygen isotopic reservoirs, our results favor vigorous mixing during the giant impact and therefore a high-energy, high-angular-momentum impact. The results indicate that the late veneer impactors had an average Δ'(17)O within approximately 1 per mil of the terrestrial value, limiting possible sources for this late addition of mass to the Earth-Moon system.

5.
Nature ; 508(7494): 84-7, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24695310

RESUMO

According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

6.
Science ; 327(5962): 193-5, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19965719

RESUMO

Phase transitions and the chemical composition of minerals in Earth's interior influence geophysical interpretations of its deep structure and dynamics. A pressure-induced spin transition in olivine has been suggested to influence iron partitioning and depletion, resulting in a distinct layered structure in Earth's lower mantle. For a more realistic mantle composition (pyrolite), we observed a considerable change in the iron-magnesium partition coefficient at about 40 gigapascals that is explained by a spin transition at much lower pressures. However, only a small depletion of iron is observed in the major high-pressure phase (magnesium silicate perovskite), which may be explained by preferential retention of the iron ion Fe3+. Changes in mineral proportions or density are not associated with the change in partition coefficient. The observed density profile agrees well with seismological models, which suggests that pyrolite is a good model composition for the upper to middle parts of the lower mantle.

7.
Science ; 319(5869): 1515-8, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18339935

RESUMO

Seismic studies indicate that beneath some regions the 520-kilometer seismic discontinuity in Earth's mantle splits into two separate discontinuities (at approximately 500 kilometers and approximately 560 kilometers). The discontinuity near 500 kilometers is most likely caused by the (Mg,Fe)2SiO4 beta-to-gamma phase transformation. We show that the formation of CaSiO3 perovskite from garnet can cause the deeper discontinuity, and by determining the temperature dependence for this reaction we demonstrate that regional variations in splitting of the discontinuity arise from variability in the calcium concentration of the mantle rather than from temperature changes. This discontinuity therefore is sensitive to large-scale chemical heterogeneity. Its occurrence and variability yield regional information on the fertility of the mantle or the proportion of recycled oceanic crust.

8.
Science ; 309(5741): 1707-10, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16051751

RESUMO

Fe-Mg interdiffusion coefficients for (Mg,Fe)SiO3 perovskite have been measured at pressures of 22 to 26 gigapascals and temperatures between 1973 and 2273 kelvin. Perovskite Fe-Mg interdiffusion is as slow as Si self-diffusion and is orders of magnitude slower than Fe-Mg diffusion in other mantle minerals. Length scales over which chemical heterogeneities can homogenize, throughout the depth range of the lower mantle, are limited to a few meters even on time scales equivalent to the age of Earth. Heterogeneities can therefore only equilibrate chemically when they are stretched and thinned by intense deformation.

9.
Nature ; 429(6987): 58-61, 2004 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15129278

RESUMO

Core formation on the Earth and Mars involved the physical separation of metal and silicate, most probably in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they have not accounted for the large differences observed between the compositions of the mantles of the Earth (approximately 8 wt% FeO) and Mars (approximately 18 wt% FeO) or the smaller mass fraction of the martian core. Here we explain these differences as a consequence of the solubility of oxygen in liquid iron-alloy increasing with increasing temperature. We assume that the Earth and Mars both accreted from oxidized chondritic material. In a terrestrial magma ocean, 1,200-2,000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean owing to high solubility of oxygen in the metal. Lower temperatures of a martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remains FeO-rich. The FeO extracted from the Earth's magma ocean may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D" layer and the light element budget of the core.

10.
Nature ; 428(6981): 409-12, 2004 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15042086

RESUMO

The oxidation state recorded by rocks from the Earth's upper mantle can be calculated from measurements of the distribution of Fe3+ and Fe2+ between the constituent minerals. The capacity for minerals to incorporate Fe3+ may also be a significant factor controlling the oxidation state of the mantle, and high-pressure experimental measurements of this property might provide important insights into the redox state of the more inaccessible deeper mantle. Here we show experimentally that the Fe3+ content of aluminous silicate perovskite, the dominant lower-mantle mineral, is independent of oxygen fugacity. High levels of Fe3+ are present in perovskite even when it is in chemical equilibrium with metallic iron. Silicate perovskite in the lower mantle will, therefore, have an Fe3+/total Fe ratio of at least 0.6, resulting in a whole-rock ratio of over ten times that of the upper mantle. Consequently, the lower mantle must either be enriched in Fe3+ or Fe3+ must form by the disproportionation of Fe2+ to produce Fe3+ plus iron metal. We argue that the lower mantle contains approximately 1 wt% of a metallic iron-rich alloy. The mantle's oxidation state and siderophile element budget have probably been influenced by the presence of this alloy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...