Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496973

RESUMO

The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.


Assuntos
Medula Óssea , Neoplasias da Próstata , Masculino , Humanos , Medula Óssea/metabolismo , Macrófagos/metabolismo , Fagocitose , Neoplasias da Próstata/patologia , Citocinas/metabolismo , Inflamação/patologia , Hipóxia/metabolismo , Microambiente Tumoral
2.
Cells ; 9(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059476

RESUMO

The clearance of apoptotic cells by macrophages (efferocytosis) is crucial to maintain normal tissue homeostasis; however, efferocytosis of cancer cells frequently results in inflammation and immunosuppression. Recently, we demonstrated that efferocytosis of apoptotic prostate cancer cells by bone marrow-derived macrophages induced a pro-inflammatory response that accelerated metastatic tumor growth in bone. To evaluate the microenvironmental impact of macrophages and their efferocytic function, we compared peritoneal macrophages (P-MΦ) versus bone marrow-derived macrophages (BM-MΦs) using an efferocytosis in vitro model. The capability to engulf apoptotic prostate cells was similar in BM-MΦs and P-MΦs. Ex vivo analysis of BM-MΦs showed an M2-like phenotype compared with a predominantly M1-like phenotype in P-MΦs. A distinct gene and protein expression profile of pro-inflammatory cytokines was found in BM-MΦs as compared with P-MΦs engulfing apoptotic prostate cancer cells. Importantly, the reprogramming of BM-MΦs toward an M1-like phenotype mitigated their inflammatory cytokine expression profile. In conclusion, BM-MΦs and P-MΦs are both capable of efferocytosing apoptotic prostate cancer cells; however, BM-MΦs exert increased inflammatory cytokine expression that is dependent upon the M2 polarization stage of macrophages. These findings suggest that bone marrow macrophage efferocytosis of apoptotic cancer cells maintains a unique pro-inflammatory microenvironment that may support a fertile niche for cancer growth. Finally, bone marrow macrophage reprogramming towards M1-type by interferon-γ (IFN-γ) induced a significant reduction in the efferocytosis-mediated pro-inflammatory signature.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Interferon gama/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose
3.
Bladder Cancer ; 4(1): 77-90, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29430509

RESUMO

BACKGROUND: The HER family of proteins (EGFR, HER2, HER3 and HER4) have long been thought to be therapeutic targets for bladder cancer, but previous clinical trials targeting these proteins have been disappointing. Second generation agents may be more effective. OBJECTIVE: The aim of this study was to evaluate responses to two second-generation irreversible tyrosine kinase inhibitors, dacomitinib and afatinib, in bladder cancer cell lines. METHODS: Cell lines were characterized by targeted next generation DNA sequencing, RNA sequencing, western blotting and flow cytometry. Cell survival responses to dacomitinib or afatinib were determined using (3-[4,5-dimethylthioazol-2-yl]-2,5-diphenyl tetrazolium bromide) (MTT) or [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine methosylfate (PMS) cell survival assays. RESULTS: Only two cell lines of 12 tested were sensitive to afatinib. Sensitivity to afatinib was significantly associated with mutation in either HER2 or HER3 (p < 0.05). The two cell lines sensitive to afatinib were also responsive to dacomitinib ralong with an additional 4 other cell lines out of 16 tested. No characteristic was associated with dacomitinib sensitivity. Molecular profiling demonstrated that only two genes were high in both afatinib and dacomitinib sensitive cells. Further rhigher expression of RAS pathway genes was noted for dacomitinib responsive cells. CONCLUSIONS: This study confirms that cell line screening can be useful in pre-clinical evaluation of targeted small molecule inhibitors and suggests that compounds with similar structure(s) and target(s) may have distinct sensitivity profiles. Further rcombinational targeting of additional molecularly relevant pathways may be important in enhancing responses to HER targeted agents in bladder cancer.

4.
PLoS One ; 11(3): e0150138, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930657

RESUMO

ADAM15 is a member of a family of catalytically active disintegrin membrane metalloproteinases that function as molecular signaling switches, shed membrane bound growth factors and/or cleave and inactivate cell adhesion molecules. Aberrant metalloproteinase function of ADAM15 may contribute to tumor progression through the release of growth factors or disruption of cell adhesion. In this study, we utilized human bladder cancer tissues and cell lines to evaluate the expression and function of ADAM15 in the progression of human bladder cancer. Examination of genome and transcriptome databases revealed that ADAM15 ranked in the top 5% of amplified genes and its mRNA was significantly overexpressed in invasive and metastatic bladder cancer compared to noninvasive disease. Immunostaining of a bladder tumor tissue array designed to evaluate disease progression revealed increased ADAM15 immunoreactivity associated with increasing cancer stage and exhibited significantly stronger staining in metastatic samples. About half of the invasive tumors and the majority of the metastatic cases exhibited high ADAM15 staining index, while all low grade and noninvasive cases exhibited negative or low staining. The knockdown of ADAM15 mRNA expression significantly inhibited bladder tumor cell migration and reduced the invasive capacity of bladder tumor cells through MatrigelTM and monolayers of vascular endothelium. The knockdown of ADAM15 in a human xenograft model of bladder cancer inhibited tumor growth by 45% compared to controls. Structural modeling of the catalytic domain led to the design of a novel ADAM15-specific sulfonamide inhibitor that demonstrated bioactivity and significantly reduced the viability of bladder cancer cells in vitro and in human bladder cancer xenografts. Taken together, the results revealed an undescribed role of ADAM15 in the invasion of human bladder cancer and suggested that the ADAM15 catalytic domain may represent a viable therapeutic target in patients with advanced disease.


Assuntos
Proteínas ADAM/metabolismo , Proteínas de Membrana/metabolismo , Metástase Neoplásica/patologia , Neoplasias da Bexiga Urinária/metabolismo , Proteínas ADAM/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Bases de Dados Genéticas , Progressão da Doença , Humanos , Proteínas de Membrana/genética , Metástase Neoplásica/genética , Estadiamento de Neoplasias , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Cicatrização/genética
5.
Nat Med ; 19(3): 313-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396211

RESUMO

Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.


Assuntos
Aminopiridinas/farmacologia , Fármacos Antiobesidade/farmacologia , Metabolismo Energético/efeitos dos fármacos , Quinase I-kappa B/antagonistas & inibidores , Resistência à Insulina , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antialérgicos/farmacologia , Linhagem Celular , Dieta Hiperlipídica , Ativação Enzimática , Fígado Gorduroso/tratamento farmacológico , Transtornos do Metabolismo de Glucose/tratamento farmacológico , Quinase I-kappa B/metabolismo , Resistência à Insulina/imunologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/metabolismo , Obesidade/tratamento farmacológico , Obesidade/imunologia , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Redução de Peso/efeitos dos fármacos
6.
J Virol ; 84(11): 5695-705, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20335262

RESUMO

Murine noroviruses (MNV) are closely related to the human noroviruses (HuNoV), which cause the majority of nonbacterial gastroenteritis. Unlike HuNoV, MNV grow in culture and in a small-animal model that represents a tractable model to study norovirus biology. To begin a detailed investigation of molecular events that occur during norovirus binding to cells, the crystallographic structure of the murine norovirus 1 (MNV-1) capsid protein protruding (P) domain has been determined. Crystallization of the bacterially expressed protein yielded two different crystal forms (Protein Data Bank identifiers [PDB ID], 3LQ6 and 3LQE). Comparison of the structures indicated a large degree of structural mobility in loops on the surface of the P2 subdomain. Specifically, the A'-B' and E'-F' loops were found in open and closed conformations. These regions of high mobility include the known escape mutation site for the neutralizing antibody A6.2 and an attenuation mutation site, which arose after serial passaging in culture and led to a loss in lethality in STAT1(-/-) mice, respectively. Modeling of a Fab fragment and crystal structures of the P dimer into the cryoelectron microscopy three-dimensional (3D) image reconstruction of the A6.2/MNV-1 complex indicated that the closed conformation is most likely bound to the Fab fragment and that the antibody contact is localized to the A'-B' and E'-F' loops. Therefore, we hypothesize that these loop regions and the flexibility of the P domains play important roles during MNV-1 binding to the cell surface.


Assuntos
Proteínas do Capsídeo/química , Norovirus/química , Animais , Anticorpos Antivirais , Membrana Celular , Microscopia Crioeletrônica , Cristalização , Cristalografia por Raios X , Fragmentos Fab das Imunoglobulinas/química , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína
7.
J Virol ; 84(11): 5836-41, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20335264

RESUMO

Our previous structural studies on intact, infectious murine norovirus 1 (MNV-1) virions demonstrated that the receptor binding protruding (P) domains are lifted off the inner shell of the virus. Here, the three-dimensional (3D) reconstructions of recombinant rabbit hemorrhagic disease virus (rRHDV) virus-like particles (VLPs) and intact MNV-1 were determined to approximately 8-A resolution. rRHDV also has a raised P domain, and therefore, this conformation is independent of infectivity and genus. The atomic structure of the MNV-1 P domain was used to interpret the MNV-1 reconstruction. Connections between the P and shell domains and between the floating P domains were modeled. This observed P-domain flexibility likely facilitates virus-host receptor interactions.


Assuntos
Microscopia Crioeletrônica/métodos , Vírus da Doença Hemorrágica de Coelhos/química , Norovirus/química , Receptores Virais/química , Animais , Sítios de Ligação , Imageamento Tridimensional , Camundongos , Maleabilidade , Conformação Proteica , Coelhos
8.
J Biol Chem ; 284(44): 30594-603, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19726684

RESUMO

The phosphatase KdsC cleaves 3-deoxy-D-manno-octulosonate 8-phosphate to generate a molecule of inorganic phosphate and Kdo. Kdo is an essential component of the lipopolysaccharide envelope in Gram-negative bacteria. Because lipopolysaccharide is an important determinant of bacterial resistance and toxicity, KdsC is a potential target for novel antibacterial agents. KdsC belongs to the broad haloacid dehalogenase superfamily. In haloacid dehalogenase superfamily enzymes, substrate specificity and catalytic efficiency are generally dictated by a fold feature called the cap domain. It is therefore not clear why KdsC, which lacks a cap domain, is catalytically efficient and highly specific to 3-deoxy-D-manno-octulosonate 8-phosphate. Here, we present a set of seven structures of tetrameric Escherichia coli KdsC (ranging from 1.4 to 3.06 A in resolution) that model different intermediate states in its catalytic mechanism. A crystal structure of product-bound E. coli KdsC shows how the interface between adjacent monomers defines the active site pocket. Kdo is engaged in a network of polar and nonpolar interactions with residues at this interface, which explains substrate specificity. Furthermore, this structural and kinetic analysis strongly suggests that the binding of the flexible C-terminal region (tail) to the active site makes KdsC catalytically efficient by facilitating product release.


Assuntos
Proteínas de Escherichia coli/química , Hidrolases/química , Monoéster Fosfórico Hidrolases/química , Antibacterianos , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Hidrolases/metabolismo , Lipopolissacarídeos , Monoéster Fosfórico Hidrolases/metabolismo , Conformação Proteica , Especificidade por Substrato , Açúcares Ácidos/metabolismo , Fosfatos Açúcares/metabolismo
9.
Bioorg Med Chem Lett ; 16(9): 2337-40, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16143519

RESUMO

The inhibition of the cytosolic isoenzyme BCAT that is expressed specifically in neuronal tissue is likely to be useful for the treatment of neurodegenerative and other neurological disorders where glutamatergic mechanisms are implicated. Compound 2 exhibited an IC50 of 0.8 microM in the hBCATc assays; it is an active and selective inhibitor. Inhibitor 2 also blocked calcium influx into neuronal cells following inhibition of glutamate uptake, and demonstrated neuroprotective efficacy in vivo. SAR, pharmacology, and the crystal structure of hBCATc with inhibitor 2 are described.


Assuntos
Benzofuranos/síntese química , Benzofuranos/uso terapêutico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Sulfonamidas/síntese química , Sulfonamidas/uso terapêutico , Transaminases/antagonistas & inibidores , Animais , Benzofuranos/química , Cálcio/antagonistas & inibidores , Cálcio/metabolismo , Células Cultivadas , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Estrutura Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/química
10.
J Med Chem ; 47(6): 1553-74, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-14998341

RESUMO

Aza-peptide epoxides, a novel class of irreversible protease inhibitors, are specific for the clan CD cysteine proteases. Aza-peptide epoxides with an aza-Asp residue at P1 are excellent irreversible inhibitors of caspases-1, -3, -6, and -8 with second-order inhibition rates up to 1 910 000 M(-1) s(-1). In general, the order of reactivity of aza-peptide epoxides is S,S > R,R > trans > cis. Interestingly, some of the R,R epoxides while being less potent are actually more selective than the S,S epoxides. Our aza-peptide epoxides designed for caspases are stable, potent, and specific inhibitors, as they show little to no inhibition of other proteases such as the aspartyl proteases porcine pepsin, human cathepsin D, plasmepsin 2 from P. falciparum, HIV-1 protease, and the secreted aspartic proteinase 2 (SAP-2) from Candida albicans; the serine proteases granzyme B and alpha-chymotrypsin; and the cysteine proteases cathepsin B and papain (clan CA), and legumain (clan CD).


Assuntos
Compostos Aza/síntese química , Inibidores de Caspase , Compostos de Epóxi/síntese química , Oligopeptídeos/síntese química , Compostos Aza/química , Caspase 1/química , Caspase 3 , Caspase 6 , Caspase 8 , Caspases/química , Cristalografia por Raios X , Desenho de Fármacos , Estabilidade de Medicamentos , Compostos de Epóxi/química , Humanos , Hidrólise , Estrutura Molecular , Oligopeptídeos/química , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...