Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 79(4): 875-882, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38394463

RESUMO

BACKGROUND: Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is increasing worldwide, with Mycobacterium avium complex (MAC) and Mycobacterium abscessus as the predominant pathogens. Current treatments are poorly tolerated and modestly effective, highlighting the need for new treatments. SPR719, the active moiety of the benzimidazole prodrug SPR720, inhibits the ATPase subunits of DNA gyrase B, a target not exploited by current antibiotics, and therefore, no cross-resistance is expected with standard-of-care (SOC) agents. OBJECTIVES: To evaluate the in vitro activity of SPR719 against MAC and M. abscessus clinical isolates, including those resistant to SOC agents, and in vivo efficacy of SPR720 in murine non-tuberculous mycobacteria (NTM) pulmonary infection models. METHODS: NTM isolates were tested for susceptibility to SPR719. Chronic C3HeB/FeJ and severe combined immunodeficient murine models of pulmonary infection were used to assess efficacy of SPR720 against MAC and M. abscessus, respectively. RESULTS: SPR719 was active against MAC (MIC90, 2 mg/L) and M. abscessus (MIC90, 4 mg/L) clinical isolates. Efficacy of SPR720 was demonstrated against MAC pulmonary infection, both as a monotherapy and in combination with SOC agents. SPR720 monotherapy exhibited dose-dependent reduction in bacterial burden, with the largest reduction observed when combined with clarithromycin and ethambutol. Efficacy of SPR720 was also demonstrated against M. abscessus pulmonary infection where monotherapy exhibited a dose-dependent reduction in bacterial burden with further reductions detected when combined with SOC agents. CONCLUSIONS: In vitro activity of SPR720 against common NTM pathogens and efficacy in murine infections warrant the continued clinical evaluation of SPR720 as a new oral option for the treatment of NTM-PD.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Pneumonia , Humanos , Animais , Camundongos , Micobactérias não Tuberculosas , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Modelos Animais de Doenças , Complexo Mycobacterium avium , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumopatias/tratamento farmacológico , Pneumonia/tratamento farmacológico
2.
Artigo em Inglês | MEDLINE | ID: mdl-32423950

RESUMO

The continued evolution of bacterial resistance to the ß-lactam class of antibiotics has necessitated countermeasures to ensure continued effectiveness in the treatment of infections caused by bacterial pathogens. One relatively successful approach has been the development of new ß-lactam analogs with advantages over prior compounds in this class. The carbapenems are an example of such ß-lactam analogs possessing improved stability against ß-lactamase enzymes and, therefore, a wider spectrum of activity. However, all carbapenems currently marketed for adult patients are intravenous agents, and there is an unmet need for an oral agent to treat patients that otherwise do not require hospitalization. Tebipenem pivoxil hydrobromide (tebipenem-PI-HBr or SPR994) is an orally available prodrug of tebipenem, a carbapenem with activity versus multidrug-resistant (MDR) Gram-negative pathogens, including quinolone-resistant and extended-spectrum-ß-lactamase-producing Enterobacterales Tebipenem-PI-HBr is currently in development for the treatment of complicated urinary tract infections (cUTI). Microbiological data are presented here that demonstrate equivalency of tebipenem with intravenous carbapenems such as meropenem and support its use in infections in which the potency and spectrum of a carbapenem are desired. The results from standard in vitro microbiology assays as well as efficacy in several in vivo mouse infection models suggest that tebipenem-PI-HBr could be a valuable oral agent available to physicians for the treatment of infections, particularly those caused by antibiotic-resistant Gram-negative pathogens.


Assuntos
Carbapenêmicos , Infecções Urinárias , Adulto , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Humanos , Meropeném , Camundongos , Infecções Urinárias/tratamento farmacológico
3.
ACS Infect Dis ; 6(6): 1405-1412, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31566948

RESUMO

Therapeutics targeting Gram-negative bacteria have the challenge of overcoming a formidable outer membrane (OM) barrier. Here, we characterize the action of SPR741, a novel polymyxin B (PMB) analogue shown to potentiate several large-scaffold antibiotics in Gram-negative pathogens. Probing the surface topology of Escherichia coli using atomic force microscopy revealed substantial OM disorder at concentrations of SPR741 that lead to antibiotic potentiation. Conversely, very little cytoplasmic membrane depolarization was observed at these same concentrations, indicating that SPR741 acts predominately on the OM. Truncating the lipopolysaccharide (LPS) core with genetic perturbations uniquely sensitized E. coli to SPR741, suggesting that LPS core residues keep SPR741 at the OM, where it can potentiate a codrug, rather than permit its entry to the cytoplasmic membrane. Further, a promoter activity assay revealed that SPR741 challenge induced the expression of RcsAB, a stress sensor for OM perturbation. Together, these results indicate that SPR741 interacts predominately with the OM, in contrast to the dual action of PMB and colistin at both the outer and cytoplasmic membranes.


Assuntos
Antibacterianos , Polimixina B , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Escherichia coli/genética , Bactérias Gram-Negativas , Polimixina B/farmacologia
4.
Microb Drug Resist ; 26(4): 319-328, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31596663

RESUMO

The antimicrobial activities of several ß-lactam agents were tested by broth microdilution alone and in combination with a new polymyxin analog, SPR741 (at a fixed concentration of 8 mg/L), against a challenge set of clinical isolates (202 Escherichia coli and 221 Klebsiella pneumoniae isolates). Using Clinical and Laboratory Standards Institute (CLSI) or European Committee on Antimicrobial Susceptibility Testing (EUCAST) susceptibility criteria for each partner antibiotic, mecillinam-SPR741, temocillin-SPR741, and piperacillin-tazobactam-SPR741 combinations had susceptibility rates higher (85.6-100.0%) than the respective agents tested alone (47.5-88.7%) against extended-spectrum ß-lactamase (ESBL)-producing E. coli and K. pneumoniae. Temocillin-SPR741 (97.8% susceptible) had MIC50 (minimum inhibitory concentration) and MIC90 results of 0.5 and 2 mg/L, respectively, against K. pneumoniae carbapenemase (KPC)-producing E. coli, 8- to 16-fold lower than temocillin alone (MIC50/90, 8/16 mg/L; 65.2% susceptible). The mecillinam MIC50/MIC90 results dropped to 1/4 mg/L (from 128/>256 mg/L when tested alone) against metallo-ß-lactamase (MBL)-producing E. coli. These MICs for mecillinam-SPR741 resulted in a susceptibility rate of 96.9% versus 9.4% for mecillinam. In general, a decrease in MICs for ß-lactams (MIC90, >32 mg/L) in the presence of SPR741 was not observed against KPC-, MBL- or OXA-48-like-producing K. pneumoniae. These study results indicate that some agents had a significant increase in in vitro activity in the presence of SPR741 and could become potential strategic options for treating serious infections caused by multidrug-resistant Enterobacteriaceae.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Polimixinas/farmacologia , beta-Lactamas/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/metabolismo , Escherichia coli/metabolismo , Humanos , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana/métodos , Penicilinas/farmacologia , Combinação Piperacilina e Tazobactam/farmacologia , beta-Lactamases/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-30936096

RESUMO

The antimicrobial activity of tebipenem and other carbapenem agents were tested in vitro against a set of recent clinical isolates responsible for urinary tract infection (UTI), as well as against a challenge set. Isolates were tested by reference broth microdilution and included Escherichia coli (101 isolates), Klebsiella pneumoniae (208 isolates), and Proteus mirabilis (103 isolates) species. Within each species tested, tebipenem showed equivalent MIC50/90 values to those of meropenem (E. coli MIC50/90, ≤0.015/0.03 mg/liter; K. pneumoniae MIC50/90, 0.03/0.06 mg/liter; and P. mirabilis MIC50/90, 0.06/0.12 mg/liter) and consistently displayed MIC90 values 8-fold lower than imipenem. Tebipenem and meropenem (MIC50, 0.03 mg/liter) showed equivalent MIC50 results against wild-type, AmpC-, and/or extended-spectrum ß-lactamase (ESBL)-producing isolates. Tebipenem also displayed MIC50/90 values 4- to 8-fold lower than imipenem against the challenge set. All carbapenem agents were less active (MIC50, ≥8 mg/liter) against isolates carrying carbapenemase genes. These data confirm the in vitro activity of the orally available agent tebipenem against prevalent UTI Enterobacteriaceae species, including those producing ESBLs and/or plasmid AmpC enzymes.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Enterobacteriaceae/patogenicidade , Enterobacteriaceae/efeitos dos fármacos , Testes de Sensibilidade Microbiana
6.
Artigo em Inglês | MEDLINE | ID: mdl-30718255

RESUMO

Tebipenem (SPR859) is the microbiologically active form of SPR994 (tebipenem-pivoxil), an orally available carbapenem with activity against extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae Measurement of the relative binding of SPR859 to the bacterial cell targets revealed that it is a potent inhibitor of multiple penicillin-binding proteins (PBPs) but primarily a Gram-negative PBP 2 inhibitor, similar to other compounds in this class. These data support further clinical development of SPR994.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Humanos , Testes de Sensibilidade Microbiana/métodos , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamases/metabolismo
7.
ACS Infect Dis ; 4(11): 1536-1539, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30240184

RESUMO

The discovery of urgently needed antibiotics is hindered by challenges to information sharing. To help address this challenge, The Pew Charitable Trusts launched SPARK: the Shared Platform for Antibiotic Research and Knowledge. SPARK is an online, publicly available, interactive database designed to help scientists build on previous research and generate new insights to advance the field's understanding of Gram-negative permeability. This Viewpoint details how data are selected and integrated into the platform, how scientists can use SPARK to share their data, and the ways the scientific community can access and use these data to develop hypotheses.


Assuntos
Antibacterianos , Bases de Dados Factuais , Descoberta de Drogas , Disseminação de Informação , Colaboração Intersetorial , Pesquisa , Instituições de Caridade , Saúde Global , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-30126964

RESUMO

Nontuberculous mycobacterium (NTM) infections are increasing globally. The Mycobacterium avium complex (MAC) and Mycobacterium abscessus are the most frequently encountered NTM among clinical laboratories, and treatment options are extremely limited. In this study, the in vitro potency of a novel benzimidazole, SPR719, the microbiologically active form of the orally available prodrug SPR720, was tested against several species of NTM. MICs were determined for 161 isolates of NTM of 13 taxa (seven species, three subspecies, and three groups/complexes) in cation-adjusted Mueller-Hinton Broth, as described and recommended by the Clinical and Laboratory Standards Institute (CLSI M24-A2). Comparator antimicrobials included amikacin, cefoxitin, ciprofloxacin, clarithromycin, doxycycline, imipenem, linezolid, minocycline, moxifloxacin, tigecycline, and trimethoprim-sulfamethoxazole (TMP-SMX) for the rapidly growing mycobacteria (RGM), amikacin and clarithromycin for the MAC, and amikacin, ciprofloxacin, clarithromycin, doxycycline, linezolid, moxifloxacin, rifabutin, rifampin, and TMP-SMX for the other slowly growing NTM. SPR719 was found to be potent against multiple clinical strains of NTM with an MIC50 range of 0.25 to 4 µg/ml for several species of NTM. These findings support the further advancement of SPR720 for the treatment of NTM disease.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Micobactérias não Tuberculosas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico
9.
ACS Infect Dis ; 4(10): 1436-1438, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30118209

RESUMO

Carbapenems are potent antibacterials with broad-spectrum activity. However, poor oral absorption generally confines this important drug class to in-hospital use by intravenous (IV) administration. The continued rise in drug resistant pathogens creates a need for alternative oral therapies with broad-spectrum activity. SPR994 is a novel formulation of the orally bioavailable pivoxil prodrug of SPR859 (tebipenem) and is being developed as the first oral carbapenem for treatment of complicated urinary tract infections (cUTIs) in adults. Herein, we describe characteristics beneficial to oral administration and compare the in vitro and in vivo activity of SPR859 or SPR994 with IV carbapenems.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Carbapenêmicos/administração & dosagem , Carbapenêmicos/farmacocinética , Administração Intravenosa , Administração Oral , Adulto , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Disponibilidade Biológica , Carbapenêmicos/química , Carbapenêmicos/uso terapêutico , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hospitalização , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Infecções Urinárias/tratamento farmacológico
10.
J Pharm Biomed Anal ; 139: 44-53, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28273650

RESUMO

Alkyl quinolone molecules 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) are important quorum sensing signals, which play a mediatory role in the pathogenesis of acute and chronic Pseudomonas aeruginosa infection. A targeted approach inhibiting the bacterial 'multiple virulence factor regulon' (MvfR) protein complex, offers the possibility to block the synthesis of MvfR-dependant signal molecules. Here, a high throughput bioanalytical method was developed using LC-MS/MS detection for the selective determination of HHQ and PQS in mouse tissue homogenate, over a sensitive range of 1-5000 and 10-5000pg/mL, respectively. Chromatographic peak distortion of the iron chelator PQS was overcome with the applied use of a bidentate chelator mobile phase additive 2-Picolinic acid at 0.2mM concentration, giving an improved separation and response for the analyte, whilst maintaining overall MS system robustness. Following thigh infection with P. aeruginosa strain 2-PA14 in mice, the concentration and time course of HHQ and PQS (4-hydroxy-2-alkyl-quinolone (HAQ) biomarkers) residing in the biophase were evaluated, and exhibited a low level combined with a substantial inter-individual variability. Quantifiable levels could be obtained from approximately 15h post infection, to the study termination at 21-22h. A dose dependant reduction in HAQ tissue concentrations at selected time points were obtained following MvfR inhibitor administration versus drug vehicle (p<0.01, Kruskal-Wallis-one way ANOVA) and meta -analyses of several studies enabled an inhibitory concentration (IC50) of 80nM free drug to be determined. However, due to the experimental limitations a defined time profile for in-vivo HAQ production could not be characterised. Microsomal stability measurements demonstrated a rapid metabolic clearance of both alkyl quinolone biomarkers in the bacterial host, with a hepatic extraction ratio greater than 0.96 (the measurable assay limit). High clearance underpinned the low concentrations present in the well-perfused thigh tissue. Along with method development and validation details, this paper considers the kinetics of in-vivo HAQ bio-synthesis during Pseudomonas infection; and risks of biomarker over-estimation from samples which contain an exogenous population of bacteria.


Assuntos
4-Quinolonas/análise , Infecções por Pseudomonas , Pseudomonas aeruginosa/química , Percepção de Quorum , Espectrometria de Massas em Tandem/métodos , 4-Quinolonas/metabolismo , Animais , Cromatografia Líquida/métodos , Humanos , Camundongos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/fisiologia
11.
J Antimicrob Chemother ; 71(8): 2100-4, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27121398

RESUMO

BACKGROUND: In small series or individual reports, SNPs within the mprF ORF and dysregulation of its expression in Staphylococcus aureus have been linked to daptomycin resistance (DAP-R) via a proposed gain-in-function mechanism. Similarly, dysregulation of dltABCD has also been associated with DAP-R. METHODS: Using 22 well-characterized, isogenic daptomycin-susceptible (DAP-S)/DAP-R clinical MRSA strain pairs, we assessed potential relationships of the DAP-R phenotype with: (i) regulation of mprF transcription; (ii) regulation of dltABCD transcription; (iii) expression of the two-component regulatory system, graRS (upstream regulator for both mprF and dltABCD transcription); (iv) SNPs within the graRS promoter or its ORF; and (v) altered mprF transcription and lysyl-phosphatidylglycerol (L-PG) synthesis. RESULTS: Enhanced expression of mprF occurred with SNPs in highly distinct and well-chronicled MprF domain 'hot spots' and rarely occurred without such mutations. Increased expression and/or dysregulation of mprF and dltABCD were not uncommon in DAP-R strains, occurring in 27% of strains for each gene. In these latter strains, neither graRS expression profiles nor polymorphic sequences within the graRS promoter or ORF could be significantly linked to altered transcription of mprF or dlt. CONCLUSIONS: Although graRS can co-regulate mprF and dltABCD expression, loci outside of this regulon appear to be involved in dysregulation of these latter two genes and the DAP-R phenotype. Finally, DAP-R strains exhibiting significantly altered mprF transcription profiles produced significantly increased levels of L-PG.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Daptomicina/farmacologia , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Transcrição Gênica
12.
Antimicrob Agents Chemother ; 59(8): 4930-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055370

RESUMO

MprF is responsible for the lysinylation of phosphatidylglycerol (PG) to synthesize the positively charged phospholipid (PL) species, lysyl-PG (L-PG). It has been proposed that the single-nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) are associated with a gain-in-function phenotype in terms of daptomycin resistance in Staphylococcus aureus. (Note that although the official term is daptomycin nonsusceptibility, we use the term daptomycin resistance in this paper for ease of presentation.) Using 22 daptomycin-susceptible (DAP(s))/daptomycin-resistant (DAP(r)) clinical methicillin-resistant S. aureus (MRSA) strain pairs, we assessed (i) the frequencies and distribution of putative mprF gain-in-function SNPs, (ii) the relationships of the SNPs to both daptomycin resistance and cross-resistance to the prototypical endovascular host defense peptide (HDP) thrombin-induced platelet microbicidal protein (tPMP), and (iii) the impact of mprF SNPs on positive surface charge phenotype and modifications of membrane PL profiles. Most of the mprF SNPs identified in our DAP(r) strains were clustered within the two MprF loci, (i) the central bifunctional domain and (ii) the C-terminal synthase domain. Moreover, we were able to correlate the presence and location of mprF SNPs in DAP(r) strains with HDP cross-resistance, positive surface charge, and L-PG profiles. Although DAP(r) strains with mprF SNPs in the bifunctional domain showed higher resistance to tPMPs than DAP(r) strains with SNPs in the synthase domain, this relationship was not observed in positive surface charge assays. These results demonstrated that both charge-mediated and -unrelated mechanisms are involved in DAP resistance and HDP cross-resistance in S. aureus.


Assuntos
Aminoaciltransferases/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Meticilina/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Fenótipo , Infecções Estafilocócicas/tratamento farmacológico
13.
Virulence ; 6(2): 127-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830650

RESUMO

Daptomycin resistance (DAP(R)) in Staphylococcus aureus is associated with mutations in genes that are also implicated in staphylococcal pathogenesis. Using a laboratory-derived series of DAP exposed strains, we showed a relationship between increasing DAP MIC and reduced virulence in a Galleria mellonella infection model. Point mutations in walK and rpoC led to cumulative reductions in virulence and simultaneous increases in DAP MIC. A point mutation to mprF did not impact on S.aureus virulence; however deletion of mprF led to virulence attenuation and hyper-susceptibility to DAP. To validate our findings in G. mellonella, we confirmed the attenuated virulence of select isolates from the laboratory-derived series using a murine septicaemia model. As a corollary, we showed significant virulence reductions for clinically-derived DAP(R) isolates compared to their isogenic, DAP-susceptible progenitors (DAP(S)). Intriguingly, each clinical DAP(R) isolate was persistent in vivo. Taken together, it appears the genetic correlates underlying daptomycin resistance in S. aureus also alter pathogenicity.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Genótipo , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Fenótipo , Mutação Puntual , Staphylococcus aureus/genética , Virulência
14.
Antimicrob Agents Chemother ; 57(11): 5658-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002096

RESUMO

Single nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) have been commonly observed in daptomycin-resistant (DAP(r)) Staphylococcus aureus strains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if such mprF SNPs are causal in DAP(r) strains or are merely a biomarker for this phenotype. In this study, we used an isogenic set of S. aureus strains: (i) Newman, (ii) its isogenic ΔmprF mutant, and (iii) several in trans plasmid complementation constructs, expressing either a wild-type or point-mutated form of the mprF ORF cloned from two isogenic DAP-susceptible (DAP(s))-DAP(r) strain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprF strain with singly point-mutated mprF genes (mprFS295L or mprFT345A) revealed that (i) individual and distinct point mutations within the mprF ORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding to S. aureus by a charge repulsion mechanism. Thus, for these two DAP(r) strains, the defined mprF SNPs appear to be causally related to this phenotype.


Assuntos
Aminoaciltransferases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Farmacorresistência Bacteriana/genética , Polimorfismo de Nucleotídeo Único , Staphylococcus aureus/efeitos dos fármacos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Teste de Complementação Genética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Fases de Leitura Aberta , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Eletricidade Estática
15.
PLoS One ; 8(3): e58469, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554895

RESUMO

Daptomycin is an extensively used anti-staphylococcal agent due to the rise in methicillin-resistant Staphylococcus aureus, but the mechanism(s) of resistance is poorly understood. Comparative genome sequencing, transcriptomics, ultrastructure, and cell envelope studies were carried out on two relatively higher level (4 and 8 µg/ml(-1)) laboratory-derived daptomycin-resistant strains (strains CB1541 and CB1540 respectively) compared to their parent strain (CB1118; MW2). Several mutations were found in the strains. Both strains had the same mutations in the two-component system genes walK and agrA. In strain CB1540 mutations were also detected in the ribose phosphate pyrophosphokinase (prs) and polyribonucleotide nucleotidyltransferase genes (pnpA), a hypothetical protein gene, and in an intergenic region. In strain CB1541 there were mutations in clpP, an ATP-dependent protease, and two different hypothetical protein genes. The strain CB1540 transcriptome was characterized by upregulation of cap (capsule) operon genes, genes involved in the accumulation of the compatible solute glycine betaine, ure genes of the urease operon, and mscL encoding a mechanosensitive chanel. Downregulated genes included smpB, femAB and femH involved in the formation of the pentaglycine interpeptide bridge, genes involved in protein synthesis and fermentation, and spa encoding protein A. Genes altered in their expression common to both transcriptomes included some involved in glycine betaine accumulation, mscL, ure genes, femH, spa and smpB. However, the CB1541 transcriptome was further characterized by upregulation of various heat shock chaperone and protease genes, consistent with a mutation in clpP, and lytM and sceD. Both strains showed slow growth, and strongly decreased autolytic activity that appeared to be mainly due to decreased autolysin production. In contrast to previous common findings, we did not find any mutations in phospholipid biosynthesis genes, and it appears there are multiple pathways to and factors in daptomycin resistance.


Assuntos
Antibacterianos , Proteínas de Bactérias/biossíntese , Daptomicina , Farmacorresistência Bacteriana/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Staphylococcus aureus/metabolismo , Transcriptoma/fisiologia , Proteínas de Bactérias/genética , Especificidade da Espécie , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestrutura
16.
Int J Microbiol ; 2012: 683450, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956961

RESUMO

Previous studies showed serial 20 d in vitro passage of MRSA strain MW2 in sublethal daptomycin (DAP) resulted in diverse perturbations in both cell membrane (CM) and cell wall (CW) characteristics, including increased CM rigidity; increased CW thickness; "gain-in-function" single nucleotide polymorphisms (SNPs) in the mprF locus (i.e., increased synthesis and translocation of lysyl-phosphatidylglycerol (L-PG)); progressive accumulation of SNPs in yyc and rpo locus genes; reduced carotenoid production; cross-resistance to innate host defense peptides. The current study was designed to characterize the reproducibility of these phenotypic and genotypic modifications following in vitro serial passages of the same parental strain. After a second 20d serial in vitro passage of parental MW2, emergence of DAP-R was associated with evolution of several phenotypes closely mirroring previous passage outcomes. However, in contrast to the initial serial passage strain set, we observed (i) only modest increase in L-PG synthesis and no increase in L-PG outer CM translocation; (ii) significantly increased carotenoid synthesis (P < 0.05); (iii) a different order of SNP accumulations (mprF ≫ rpoB ≫ yycG); (iv) a different cadre and locations of such SNPs. Thus, MRSA strains are not "pre-programmed" to phenotypically and/or genotypically adapt in an identical manner during induction of DAP resistance.

17.
Mol Membr Biol ; 29(1): 1-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22276671

RESUMO

Daptomycin (DAP) is a cyclic lipopeptide antibiotic used for the treatment of certain Staphylococcus aureus infections. Although rare, strains have been isolated that are DAP resistant. These strains usually have mutations in mprF, a gene encoding a membrane protein with both lysylphosphatidylglycerol (LPG) synthase and flippase activities. Because ΔmprF strains have increased DAP susceptibility, the mechanism of resistance is not likely due to a loss of mprF function. In this study, we developed an LC-MS assay to examine the effect of different mprF mutations on the ratio of phosphatidylglycerol (PG) to LPG in the membrane. Our assay demonstrated that some, but not all, mutations in the flippase and synthase domains result in small but reproducible increases in the proportion of LPG relative to PG. Techniques described herein represent a higher throughput and more sensitive method for measuring relative phospholipids levels. These results offer guidance in the understanding of how mprF confers DAP resistance; namely, mprF-mediated resistance may be through more than one mechanism, including increased overall LPG synthesis and increased LPG present on the outer leaflet of the cytoplasmic membrane.


Assuntos
Aminoaciltransferases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Mutação , Fosfolipídeos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Cromatografia Líquida , Íons/química , Lisina/análise , Lisina/química , Testes de Sensibilidade Microbiana , Fosfatidilgliceróis/análise , Fosfatidilgliceróis/química , Fosfolipídeos/análise , Staphylococcus aureus/química , Espectrometria de Massas em Tandem
18.
PLoS One ; 7(1): e28316, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22238576

RESUMO

BACKGROUND: Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus. METHODS: Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates. RESULTS: On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol. CONCLUSION: Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus.


Assuntos
Daptomicina/uso terapêutico , Farmacorresistência Bacteriana/genética , Genoma Bacteriano/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Antibacterianos/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Daptomicina/farmacologia , Humanos , Laboratórios Hospitalares , Metabolismo dos Lipídeos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Pacientes , Análise de Sequência de DNA , Staphylococcus aureus/efeitos dos fármacos
19.
Antimicrob Agents Chemother ; 56(1): 92-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21986832

RESUMO

Daptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistant Staphylococcus aureus (MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients with S. aureus infections after treatment with DAP. Different point mutations were found in the mprF gene in DAP-resistant (DR) strains. Investigation of the mprF L826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutated mprF in DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested that mprF was not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory system vraSR. Inactivation of vraSR resulted in increased DAP susceptibility, while complementation of vraSR mutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact of vraSR and mprF mutations in the cell wall. Moreover, overexpression of vraSR in DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations in mprF, vraSR contributes to DAP resistance in the present group of clinical strains.


Assuntos
Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/tratamento farmacológico , Aminoaciltransferases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Teste de Complementação Genética , Genótipo , Humanos , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Microscopia Eletrônica , Mutação , Fenótipo , Plasmídeos , Infecções Estafilocócicas/microbiologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transformação Bacteriana
20.
Antimicrob Agents Chemother ; 55(9): 4012-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21709105

RESUMO

We investigated the hypothesis that methicillin-resistant Staphylococcus aureus (MRSA) isolates developing reduced susceptibilities to daptomycin (DAP; a calcium-dependent molecule acting as a cationic antimicrobial peptide [CAP]) may also coevolve reduced in vitro susceptibilities to host defense cationic antimicrobial peptides (HDPs). Ten isogenic pairs of clinical MRSA DAP-susceptible/DAP-resistant (DAP(s)/DAP(r)) strains were tested against two distinct HDPs differing in structure, mechanism of action, and origin (thrombin-induced platelet microbicidal proteins [tPMPs] and human neutrophil peptide-1 [hNP-1]) and one bacterium-derived CAP, polymyxin B (PMB). Seven of 10 DAP(r) strains had point mutations in the mprF locus (with or without yyc operon mutations), while three DAP(r) strains had neither mutation. Several phenotypic parameters previously associated with DAP(r) were also examined: cell membrane order (fluidity), surface charge, and cell wall thickness profiles. Compared to the 10 DAP(s) parental strains, their respective DAP(r) strains exhibited (i) significantly reduced susceptibility to killing by all three peptides (P < 0.05), (ii) increased cell membrane fluidity, and (iii) significantly thicker cell walls (P < 0.0001). There was no consistent pattern of surface charge profiles distinguishing DAP(s) and DAP(r) strain pairs. Reduced in vitro susceptibility to two HDPs and one bacterium-derived CAP tracked closely with DAP(r) in these 10 recent MRSA clinical isolates. These results suggest that adaptive mechanisms involved in the evolution of DAP(r) also provide MRSA with enhanced survivability against HDPs. Such adaptations appear to correlate with MRSA variations in cell membrane order and cell wall structure. DAP(r) strains with or without mutations in the mprF locus demonstrated significant cross-resistance profiles to these unrelated CAPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Daptomicina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Genótipo , Gentamicinas/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Polimixina B/farmacologia , Vancomicina/farmacologia , alfa-Defensinas/farmacologia , beta-Tromboglobulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...