Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833057

RESUMO

Structural characterization of biologically formed materials is essential for understanding biological phenomena and their enviro-nment, and for generating new bio-inspired engineering concepts. For example, nacre-the inner lining of some mollusk shells-encodes local environmental conditions throughout its formation and has exceptional strength due to its nanoscale brick-and-mortar structure. This layered structure, comprising alternating transparent aragonite (CaCO3) tablets and thinner organic polymer layers, also results in stunning interference colors. Existing methods of structural characterization of nacre rely on some form of cross-sectional analysis, such as scanning or transmission electron microscopy or polarization-dependent imaging contrast (PIC) mapping. However, these techniques are destructive and too time- and resource-intensive to analyze large sample areas. Here, we present an all-optical, rapid, and nondestructive imaging technique-hyperspectral interference tomography (HIT)-to spatially map the structural parameters of nacre and other disordered layered materials. We combined hyperspectral imaging with optical-interference modeling to infer the mean tablet thickness and its disorder in nacre across entire mollusk shells from red and rainbow abalone (Haliotis rufescens and Haliotis iris) at various stages of development. We observed that in red abalone, unexpectedly, nacre tablet thickness decreases with age of the mollusk, despite roughly similar appearance of nacre at all ages and positions in the shell. Our rapid, inexpensive, and nondestructive method can be readily applied to in-field studies.


Assuntos
Exoesqueleto/química , Gastrópodes/metabolismo , Nácar/análise , Imagem Óptica/métodos , Exoesqueleto/metabolismo , Animais , Gastrópodes/citologia , Imagem Óptica/instrumentação , Imagem Óptica/normas , Sensibilidade e Especificidade
2.
Nano Lett ; 20(12): 8483-8486, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33197190

RESUMO

We propose a new type of reflective polarizer based on polarization-dependent coupling to surface plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with efficiency of up to 95% for the desired polarization (numbers from a calculation) and thus can be stacked to achieve extinction ratios of 106 or more. As a proof of concept, we experimentally realized a polarizer based on nanoporous aluminum oxide that operates around a wavelength of 10.6 µm, corresponding to the output of a CO2 laser, using aluminum anodization, a low-cost electrochemical process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...