Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 53(11): 3576-3597, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33893679

RESUMO

Circadian rhythms are regulated by a highly conserved transcriptional/translational feedback loop that maintains approximately 24-hr periodicity from cellular to organismal levels. Much research effort is being devoted to understanding how the outputs of the master clock affect peripheral oscillators, and in turn, numerous biological processes. Recent studies have revealed roles for circadian timing in the regulation of numerous cellular behaviours in support of complex tissue regeneration. One such role involves the interaction between the circadian clockwork and the cell cycle. The molecular mechanisms that control the cell cycle create a system of regulation that allows for high fidelity DNA synthesis, mitosis and apoptosis. In recent years, it has become clear that clock gene products are required for proper DNA synthesis and cell cycle progression, and conversely, elements of the cell cycle cascade feedback to influence molecular circadian timing mechanisms. It is through this crosstalk that the circadian system orchestrates stem cell proliferation, niche exit and control of the signalling pathways that govern differentiation and self-renewal. In this review, we discuss the evidence for circadian control of tissue homeostasis and repair and suggest new avenues for research.


Assuntos
Relógios Circadianos , Proteínas CLOCK , Diferenciação Celular , Ritmo Circadiano , Homeostase
2.
Chronobiol Int ; 36(12): 1789-1793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31645137

RESUMO

The planarian flatworm has become one of the leading animal model systems for studying stem cell behavior and tissue regeneration. Recent studies have shown that components of the circadian clockwork have important roles in tissue homeostasis and repair. However, it remains unknown whether planarians exhibit circadian or diurnal rhythms in physiology or behavior. Here, we developed a behavioral assay to evaluate diurnal activity in planarians based upon their well-established propensity to swim away from light (negative phototaxis). We show evidence that the planarian Schmidtea mediterranea has diurnal variability in negative phototaxis as a function of daily variation in motility. We also demonstrate that variation in planarian motility over 48 h occurs with 24-h periodicity. Our data suggest that S. mediterranea may be a useful model for studying the interplay between the circadian system and tissue regeneration.


Assuntos
Ritmo Circadiano , Luz , Atividade Motora/efeitos da radiação , Fototaxia/fisiologia , Planárias/fisiologia , Planárias/efeitos da radiação , Análise de Variância , Animais , Fotofobia , Natação
3.
Alcohol Clin Exp Res ; 42(11): 2144-2159, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102762

RESUMO

BACKGROUND: Evidence supports a role for the circadian system in alcohol use disorders, but the impact of adolescent alcohol exposure on circadian timing later in life is unknown. Acute ethanol (EtOH) attenuates circadian photic phase-resetting in adult, but not adolescent, rodents. However, nearly all studies have focused on males and it is unknown whether this adolescent-typical insensitivity to EtOH persists into adulthood after adolescent drinking. METHODS: Circadian activity was monitored in C57BL/6J mice receiving adolescent intermittent EtOH (AIE) exposure (15% EtOH and water every other day throughout adolescence) or water alone followed by 24 days wherein EtOH was not available (washout). Mice then received a challenge dose of EtOH (1.5 g/kg, intraperitoneal) or saline 15 minutes prior to a 30-minute phase-delaying light pulse and then were released into constant darkness (DD). To control for possible phase-shifting by EtOH challenge alone, a separate group of mice underwent AIE exposure (or water-only) and washout and then received an EtOH or saline injection, but did not receive a light pulse prior to DD. RESULTS: Striking sex differences in nearly all measures of circadian photic entrainment were observed during adolescence but AIE effects were subtle and few. Only EtOH-naïve adult male mice showed attenuated photic phase-shifts with EtOH challenge, while all other groups showed normal phase-resetting responses to light. AIE-exposed females showed a persistent delay in activity offset. CONCLUSIONS: Adult male AIE-exposed mice retained adolescent-like insensitivity to EtOH-induced suppression of photic phase-resetting, suggesting AIE-induced "lock-in" of an adolescent behavioral phenotype. Adult AIE-exposed females showed delayed initiation of the rest phase. Our results also indicate that intermittent EtOH drinking has subtle effects on circadian activity in mice during adolescence that differ from previously reported effects on adult males. The observed sex differences in circadian activity, EtOH consumption and preference, and responses to EtOH challenge merit future mechanistic study.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Transtornos Cronobiológicos/induzido quimicamente , Transtornos Cronobiológicos/psicologia , Etanol/toxicidade , Envelhecimento , Consumo de Bebidas Alcoólicas/psicologia , Animais , Escuridão , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Estimulação Luminosa , Caracteres Sexuais
4.
J Biol Rhythms ; 33(5): 523-534, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30033847

RESUMO

Caffeine is widely used to reduce sedation and increase alertness. However, long-term caffeine use may disrupt circadian (daily, 24-h) rhythms and thereby negatively affect health. Here, we examined the effect of caffeine on photic regulation of circadian activity rhythms in mice. We found that entrainment to a standard 12-h light, 12-h dark (LD) photocycle was delayed during oral self-administration of caffeine. Both acute, high-dose caffeine and chronic, oral caffeine exposure potentiated photic phase-delays in mice, suggesting a possible mechanism by which entrainment to LD was delayed. The effect of caffeine on photic phase-resetting was mimicked by administration of adenosine A1, but not A2A, receptor antagonist in mice. Our results support the hypothesis that caffeine interferes with the ability of the circadian clock to respond normally to light.


Assuntos
Cafeína/administração & dosagem , Ritmo Circadiano/efeitos dos fármacos , Luz , Fotoperíodo , Agonistas do Receptor A1 de Adenosina/administração & dosagem , Agonistas do Receptor A2 de Adenosina/administração & dosagem , Animais , Cafeína/efeitos adversos , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
5.
Alcohol Clin Exp Res ; 41(1): 187-196, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27997028

RESUMO

BACKGROUND: Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus, a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol [EtOH]) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether EtOH has similar effects on circadian regulation during adolescence. METHODS: General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12-hour light, 12-hour dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of EtOH (1.5 g/kg, i.p.) or equal volume saline 15 minutes prior to a 30-minute light pulse at Zeitgeber Time 14 (2 hours into the dark phase) and then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age-group received injections but no light pulse prior to DD. RESULTS: While adults showed the expected decrease in photic phase-delays induced by acute EtOH, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. CONCLUSIONS: Collectively, our results indicate that adolescent mice are less sensitive to the effect of EtOH on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Etanol/administração & dosagem , Atividade Motora/efeitos dos fármacos , Estimulação Luminosa/métodos , Fatores Etários , Animais , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia
6.
Adv Neurobiol ; 11: 103-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25236726

RESUMO

Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. In fact, astrocytes are essential for neuronal activity in the brain and play an important role in the regulation of complex behavior. Astrocytes actively participate in synapse formation and brain information processing by releasing and uptaking glutamate, D-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine-mediated neuronal activity modulates the actions of other neurotransmitter systems. Adenosinergic fine-tuning of the glutamate system in particular has been shown to regulate circadian rhythmicity and sleep, as well as alcohol-related behavior and drinking. Adenosine gates both photic (light-induced) glutamatergic and nonphotic (alerting) input to the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Astrocytic, SNARE-mediated ATP release provides the extracellular adenosine that drives homeostatic sleep. Acute ethanol increases extracellular adenosine, which mediates the ataxic and hypnotic/sedative effects of alcohol, while chronic ethanol leads to downregulated adenosine signaling that underlies insomnia, a major predictor of relapse. Studies using mice lacking the equilibrative nucleoside transporter 1 have illuminated how adenosine functions through neuroglial interactions involving glutamate uptake transporter GLT-1 [referred to as excitatory amino acid transporter 2 (EAAT2) in human] and possibly water channel aquaporin 4 to regulate ethanol sensitivity, reward-related motivational processes, and alcohol intake.

7.
Neuropharmacology ; 85: 482-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24929110

RESUMO

Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Atividade Motora/efeitos dos fármacos , Neurotensina/análogos & derivados , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Neurotensina/agonistas , Animais , Benzazepinas/farmacologia , Bromocriptina/farmacologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Meio Ambiente , Abrigo para Animais , Masculino , Camundongos Endogâmicos C57BL , Microinjeções , Atividade Motora/fisiologia , Força Muscular/efeitos dos fármacos , Força Muscular/fisiologia , Neurotensina/farmacologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Distribuição Aleatória , Receptores Dopaminérgicos/metabolismo , Receptores de Neurotensina/metabolismo , Teste de Desempenho do Rota-Rod
8.
Neuropsychopharmacology ; 39(10): 2432-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24755889

RESUMO

Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Ritmo Circadiano/fisiologia , Corpo Estriado/fisiopatologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Atividade Motora/fisiologia , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Ritmo Circadiano/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/genética , Etanol/administração & dosagem , Expressão Gênica , Luz , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Estimulação Luminosa
9.
Neuropsychopharmacology ; 39(7): 1674-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24452391

RESUMO

Alcohol withdrawal syndrome (AWS) is a potentially fatal outcome of severe alcohol dependence that presents a significant challenge to treatment. Although AWS is thought to be driven by a hyperglutamatergic brain state, benzodiazepines, which target the GABAergic system, comprise the first line of treatment for AWS. Using a rat model of ethanol withdrawal, we tested whether ceftriaxone, a ß-lactam antibiotic known to increase the expression and activity of glutamate uptake transporter EAAT2, reduces the occurrence or severity of ethanol withdrawal manifestations. After a 2-week period of habituation to ethanol in two-bottle choice, alcohol-preferring (P) and Wistar rats received ethanol (4.0 g/kg) every 6 h for 3-5 consecutive days via gavage. Rats were then deprived of ethanol for 48 h during which time they received ceftriaxone (50 or 100 mg/kg, IP) or saline twice a day starting 12 h after the last ethanol administration. Withdrawal manifestations were captured by continuous video recording and coded. The evolution of ethanol withdrawal was markedly different for P rats vs Wistar rats, with withdrawal manifestations occurring >12 h later in P rats than in Wistar rats. Ceftriaxone 100 mg/kg per injection twice per day (200 mg/kg/day) reduced or abolished all manifestations of ethanol withdrawal in both rat variants and prevented withdrawal-induced escalation of alcohol intake. Finally, ceftriaxone treatment was associated with lasting upregulation of ethanol withdrawal-induced downregulation of EAAT2 in the striatum. Our data support the role of ceftriaxone in alleviating alcohol withdrawal and open a novel pharmacologic avenue that requires clinical evaluation in patients with AWS.


Assuntos
Ceftriaxona/uso terapêutico , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Transportador 2 de Aminoácido Excitatório/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Relação Dose-Resposta a Droga , Epilepsias Mioclônicas/etiologia , Masculino , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/patologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Fatores de Tempo
10.
Int J Bipolar Disord ; 2(1): 7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26092394

RESUMO

The lateral hypothalamus integrates critical physiological functions such as the sleep-wake cycle, energy expenditure, and sexual behaviors. These functions are severely dysregulated during mania. In this study, we successfully induced manic-like behavioral phenotypes in adult, male Wistar rats through bilateral lateral hypothalamic area kindling (LHK). To test the validity of the model, we studied the effect of standard antimanic medications lithium (47.5 mg/kg) or valproic acid (200 mg/kg) twice/day for 15 days in attenuating manic-like behaviors in the LHK rat. Compared with pre-kindling behaviors, LHK rats displayed significantly increased sexual self-stimulation (P = 0.034), excessive rearing (P = 0.0005), feeding (P = 0.013), and grooming (P = 0.007) during the kindling interval. LHK rats also drank more alcohol during the mania-induction days compared with baseline ethanol consumption levels (P = 0.01). Moreover, LHK rat exhibited increased total locomotor activity (P = 0.02) with reduced rest interval (P < 0.001) during the mania induction and post-mania days compared with baseline activity levels and rest intervals. Chronic administration of lithium or valproic acid significantly attenuated manic-like behaviors in the LHK rat model. Given the behavioral phenotype and the response to standard antimanic medications, the LHK rats may provide a model for studying manic psychopathology in humans.

11.
J Neurosci ; 33(10): 4329-38, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23467349

RESUMO

Adenosine signaling has been implicated in the pathophysiology of many psychiatric disorders including alcoholism. Striatal adenosine A2A receptors (A2AR) play an essential role in both ethanol drinking and the shift from goal-directed action to habitual behavior. However, direct evidence for a role of striatal A2AR signaling in ethanol drinking and habit development has not been established. In the present study, we found that decreased A2AR-mediated CREB activity in the dorsomedial striatum (DMS) enhanced initial behavioral acquisition of goal-directed behaviors and the vulnerability to progress to excessive ethanol drinking during operant conditioning in mice lacking ethanol-sensitive adenosine transporter ENT1 (ENT1(-/-)). Using mice expressing ß-galactosidase (lacZ) under the control of seven repeated CRE sites in both genotypes (CRE-lacZ/ENT1(+/+) mice and CRE-lacZ/ENT1(-/-) mice) and the dominant-negative form of CREB, we found that reduced CREB activity in the DMS was causally associated with decreased A2AR signaling and increased goal-directed ethanol drinking. Finally, we have demonstrated that the A2AR antagonist ZM241385 dampened protein kinase A activity-mediated signaling in the DMS and promoted excessive ethanol drinking in ENT1(+/+) mice, but not in ENT1(-/-) mice. Our results indicate that A2AR-mediated CREB signaling in the DMS is a key determinant in enhancing the development of goal-directed ethanol drinking in mice.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Comportamento de Escolha/fisiologia , Corpo Estriado/fisiologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Objetivos , Receptor A2A de Adenosina/metabolismo , Consumo de Bebidas Alcoólicas/genética , Análise de Variância , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Corpo Estriado/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esquema de Reforço , Transdução de Sinais/efeitos dos fármacos , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Triazinas/farmacologia , Triazóis/farmacologia , beta-Galactosidase/metabolismo
12.
Neuropsychopharmacology ; 38(3): 437-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23032072

RESUMO

Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.


Assuntos
Adenosina/fisiologia , Consumo de Bebidas Alcoólicas/metabolismo , Aquaporina 4/biossíntese , Astrócitos/fisiologia , Corpo Estriado/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Aquaporina 4/antagonistas & inibidores , Astrócitos/patologia , Linhagem Celular , Corpo Estriado/fisiopatologia , Regulação para Baixo/genética , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética
13.
Alcohol Clin Exp Res ; 35(8): 1467-74, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21463340

RESUMO

BACKGROUND: Alcohol dependence is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol dependence on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: (i) characterize the suprachiasmatic nucleus (SCN) pharmacokinetics of acute systemic ethanol administration, (ii) explore the effects of acute ethanol on photic and nonphotic phase-resetting, and (iii) determine if the SCN is a direct target for photic effects. METHODS: First, microdialysis was used to characterize the pharmacokinetics of acute intraperitoneal (i.p.) injections of 3 doses of ethanol (0.5, 1.0, and 2.0 g/kg) in the mouse SCN circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase delays and serotonergic ([+]8-OH-DPAT-induced) phase advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. RESULTS: Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20 to 40 minutes postinjection with half-lives for clearance ranging from 0.6 to 1.8 hours. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase delays. CONCLUSIONS: These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and nonphotic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Etanol/toxicidade , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Depressores do Sistema Nervoso Central/farmacocinética , Depressores do Sistema Nervoso Central/farmacologia , Grupos Controle , Relação Dose-Resposta a Droga , Etanol/farmacocinética , Etanol/farmacologia , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Atividade Motora/efeitos dos fármacos , Estimulação Luminosa , Fotoperíodo , Receptores de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos , Fatores de Tempo
14.
J Addict Res Ther ; S42011 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-23101030

RESUMO

OBJECTIVES: Adenosine signaling has been implicated in the pathophysiology of several psychiatric disorders including alcoholism, depression, and anxiety. Adenosine levels are controlled in part by transport across the cell membrane by equilibrative nucleoside transporters (ENTs). Recent evidence showed that a polymorphism in the gene encoding ENT1 is associated with comorbid depression and alcoholism in women. We have previously shown that deletion of ENT1 reduces ethanol intoxication and elevates alcohol intake in mice. Interestingly, ENT1 null mice display decreased anxiety-like behavior compared to wild-type littermates. However, our behavioral studies were performed only in male mice. Here, we extend our research to include female mice, and test the effect of ENT1 knockout on other behavioral correlates of alcohol drinking, including depressive and compulsive behavior, in mice. METHODS: To assess depression-like behavior, we used a forced swim test modified for mice. We examined anxiety-like behavior and locomotor activity in open field chambers, and perseverant behavior using the marble-burying test. Finally, we investigated alcohol consumption and preference in female mice using a two-bottle choice paradigm. RESULTS: ENT1 null mice of both sexes showed reduced immobility time in the forced swim test and increased time in the center of the open field compared to wild-type littermates. ENT1 null mice of both sexes showed similar locomotor activity levels and habituation to the open field chambers. Female ENT1 null mice displayed increased marble-burying compared to female wild-types, but no genotype difference was evident in males. Female ENT1 null mice showed increased ethanol consumption and preference compared to female wild-types. CONCLUSIONS: Our findings suggest that ENT1 contributes to several important behaviors involved in psychiatric disorders. Inhibition of ENT1 may be beneficial in treating depression and anxiety, while enhancement of ENT1 function may reduce compulsive behavior and drinking, particularly in females.

15.
Curr Drug Abuse Rev ; 3(3): 163-74, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21054262

RESUMO

In the central nervous system (CNS), adenosine plays an important role in regulating neuronal activity and modulates signaling by other neurotransmitters, including GABA, glutamate, and dopamine. Adenosine suppresses neurotransmitter release, reduces neuronal excitability, and regulates ion channel function through activation of four classes of G protein-coupled receptors, A(1), A(2A), A(2B), and A(3). Central adenosine are largely controlled by nucleoside transporters, which transport adenosine levels across the plasma membrane. Adenosine has been shown to modulate cortical glutamate signaling and ventral-tegmental dopaminergic signaling, which are involved in several aspects of alcohol use disorders. Acute ethanol elevates extracellular adenosine levels by selectively inhibiting the type 1 equilibrative nucleoside transporter, ENT1. Raised adenosine levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of A(1) receptors in the cerebellum, striatum, and cerebral cortex. Recently, we have shown that pharmacological inhibition or genetic deletion of ENT1 reduces the expression of excitatory amino acid transporter 2 (EAAT2), the primary regulator of extracellular glutamate, in astrocytes. These lines of evidence support a central role for adenosine-mediated glutamate signaling and the involvement of astrocytes in regulating ethanol intoxication and preference. In this paper, we discuss recent findings on the implication of adenosine signaling in alcohol use disorders.


Assuntos
Adenosina/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/metabolismo , Intoxicação Alcoólica/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Humanos , Proteínas de Transporte de Nucleosídeos/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
16.
Alcohol Clin Exp Res ; 34(9): 1651-8, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20569242

RESUMO

BACKGROUND: Alcohol abuse leads to marked disruptions of circadian rhythms, and these disturbances in themselves can increase the drive to drink. Circadian clock timing is regulated by light, as well as by nonphotic influences such as food, social interactions, and wheel running. We previously reported that alcohol markedly disrupts photic and nonphotic modes of circadian rhythm regulation in Syrian hamsters. As an extension of this work, we characterize the hedonic interrelationship between wheel running and ethanol (EtOH) intake and the effects of environmental circadian disruption (long-term exposure to constant light [LL]) on the drive to drink. METHODS: First, we tested the effect of wheel running on chronic free-choice consumption of a 20% (v/v) EtOH solution and water. Second, the effect of this alcohol drinking on wheel running in alcohol-naive animals was investigated. Third, we assessed the influence of LL, known to suppress locomotor activity and cause circadian rhythm disruption, on EtOH consumption and wheel-running behavior. RESULTS: Inhibitory effects of wheel running on EtOH intake and vice versa were observed. Exposure to LL, while not affecting EtOH intake, induced rhythm splitting in 75% of the animals. Notably, the splitting phenotype was associated with lower levels of EtOH consumption and preference prior to, and throughout, the period of LL exposure. CONCLUSIONS: These results are evidence that exercise may offer an efficacious clinical approach to reducing EtOH intake. Also, predisposition for light-induced (or other) forms of circadian disruption may modulate the drive to drink.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Transtornos Cronobiológicos/psicologia , Atividade Motora/efeitos dos fármacos , Fotoperíodo , Animais , Comportamento de Escolha , Cricetinae , Luz , Mesocricetus
17.
Alcohol Clin Exp Res ; 34(7): 1266-73, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20477766

RESUMO

BACKGROUND: Chronic ethanol abuse is associated with disrupted circadian rhythms and sleep. Ethanol administration impairs circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on circadian timing. Here, we extend previous studies to explore the effects of chronic forced ethanol on photic phase-resetting, photic entrainment, and daily locomotor activity patterns in C57BL/6J mice. METHODS: First, microdialysis was used to characterize the circadian patterns of ethanol uptake in the suprachiasmatic (SCN) circadian clock and correlate this with systemic ethanol levels and episodic drinking of 10 or 15% ethanol. Second, the effects of chronic forced ethanol drinking and withdrawal on photic phase-delays of the circadian activity rhythm were assessed. Third, the effects of chronic ethanol drinking on entrainment to a weak photic zeitgeber (1 minute of 25 lux intensity light per day) were assessed. This method was used to minimize any masking actions of light that could mask ethanol effects on clock entrainment. RESULTS: Peak ethanol levels in the SCN and periphery occurred during the dark phase and coincided with the time when light normally induces phase-delays in mice. These delays were dose-dependently inhibited by chronic ethanol and its withdrawal. Chronic ethanol did not impede re-entrainment to a shifted light cycle but affected entrainment under the weak photic zeitgeber and disrupted the daily pattern of locomotor activity. CONCLUSIONS: These results confirm that chronic ethanol consumption and withdrawal markedly impair circadian clock photic phase-resetting. Ethanol also disturbs the temporal structure of nighttime locomotor activity and photic entrainment. Collectively, these results suggest a direct action of ethanol on the SCN clock.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Ritmo Circadiano/fisiologia , Etanol/toxicidade , Atividade Motora/fisiologia , Fotoperíodo , Animais , Ritmo Circadiano/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Estimulação Luminosa/métodos , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia
18.
Am J Physiol Regul Integr Comp Physiol ; 297(3): R729-37, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19553498

RESUMO

Acute ethanol (EtOH) administration impairs circadian clock phase resetting, suggesting a mode for the disruptive effect of alcohol abuse on human circadian rhythms. Here, we extend this research by characterizing the chronobiological effects of chronic alcohol consumption. First, daily profiles of EtOH were measured in the suprachiasmatic nucleus (SCN) and subcutaneously using microdialysis in hamsters drinking EtOH. In both cases, EtOH peaked near lights-off and declined throughout the dark-phase to low day-time levels. Drinking bouts preceded EtOH peaks by approximately 20 min. Second, hamsters chronically drinking EtOH received a light pulse during the late dark phase [Zeitgeber time (ZT) 18.5] to induce photic phase advances. Water controls had shifts of 1.2 +/- 0.2 h, whereas those drinking 10% and 20% EtOH had much reduced shifts (0.5 +/- 0.1 and 0.3 +/- 0.1 h, respectively; P < 0.001 vs. controls). Third, incremental decreases in light intensity (270 lux to 0.5 lux) were used to explore chronic EtOH effects on photic entrainment and rhythm stability. Activity onset was unaffected by 20% EtOH at all light intensities. Conversely, the 24-h pattern of activity bouts was disrupted by EtOH under all light intensities. Finally, replacement of chronic EtOH with water was used to examine withdrawal effects. Water controls had photic phase advances of 1.1 +/- 0.3 h, while hamsters deprived of EtOH for 2-3 days showed enhanced shifts (2.1 +/- 0.3 h; P < 0.05 vs. controls). Thus, in chronically drinking hamsters, brain EtOH levels are sufficient to inhibit photic phase resetting and disrupt circadian activity. Chronic EtOH did not impair photic entrainment; however, its replacement with water potentiated photic phase resetting.


Assuntos
Consumo de Bebidas Alcoólicas , Comportamento Animal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Etanol/toxicidade , Fotoperíodo , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Cricetinae , Etanol/farmacocinética , Masculino , Mesocricetus , Microdiálise , Estimulação Luminosa , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Núcleo Supraquiasmático/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 296(2): R411-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073899

RESUMO

Disrupted circadian rhythmicity is associated with ethanol (EtOH) abuse, yet little is known about how EtOH affects the mammalian circadian clock of the suprachiasmatic nucleus (SCN). Clock timing is regulated by photic and nonphotic inputs to the SCN involving glutamate release from the retinohypothalamic tract and serotonin (5-HT) from the midbrain raphe, respectively. Our recent in vitro studies in the SCN slice revealed that EtOH blocks photic phase-resetting action of glutamate and enhances the nonphotic phase-resetting action of the 5-HT1A,7 agonist, 8-OH-DPAT. To explore the basis of these effects in the whole animal, we used microdialysis to characterize the pharmacokinetics of intraperitoneal injection of EtOH in the hamster SCN extracellular fluid compartment and then studied the effects of such EtOH treatment on photic and serotonergic phase resetting of the circadian locomotor activity rhythm. Peak EtOH levels (approximately 50 mM) from a 2 g/kg injection occurred within 20-40 min with a half-life of approximately 3 h. EtOH treatment dose-dependently attenuated photic phase advances but had no effect on phase delays and, contrary to in vitro findings, markedly attenuated 8-OH-DPAT-induced phase advances. In a complementary experiment using reverse microdialysis to deliver a timed SCN perfusion of EtOH during a phase-advancing light pulse, the phase advances were blocked, similar to systemic EtOH treatment. These results are evidence that acute EtOH significantly affects photic and nonphotic phase-resetting responses critical to circadian clock regulation. Notably, EtOH inhibition of photic signaling is manifest through direct action in the SCN. Such actions could underlie the disruption of circadian rhythmicity associated with alcohol abuse.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Transtornos Cronobiológicos/induzido quimicamente , Ritmo Circadiano/efeitos dos fármacos , Etanol/toxicidade , Atividade Motora/efeitos dos fármacos , Fotoperíodo , Núcleo Supraquiasmático/efeitos dos fármacos , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/farmacocinética , Transtornos Cronobiológicos/fisiopatologia , Cricetinae , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Etanol/farmacocinética , Injeções Intraperitoneais , Masculino , Mesocricetus , Microdiálise , Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...