Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 114(1): 187-196, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236041

RESUMO

Spider mite (Acari: Tetranychidae) outbreaks are common on corn grown in the arid West. Hot and dry conditions reduce mite development time, increase fecundity, and accelerate egg hatch. Climate change is predicted to increase drought incidents and produce more intense temperature patterns. Together, these environmental shifts may cause more frequent and severe spider mite infestations. Spider mite management is difficult as many commercially available acaricides are ineffective due to the development of resistance traits in field mite populations. Therefore, alternative approaches to suppress outbreaks are critically needed. Drought-tolerant plant hybrids alleviate the challenges of growing crops in water-limited environments; yet, it is unclear if drought-tolerant hybrids exposed to water stress affect mite outbreaks under these conditions. We conducted a greenhouse experiment to evaluate the effect of drought-tolerant corn hybrids on Banks grass mite [Oligonychus pratensis Banks (Acari: Tetranychidae)], a primary pest of corn, under optimal irrigation and water-stress irrigation. This was followed by a 2-yr field study investigating the effect of drought-tolerant corn hybrids exposed to the same irrigation treatments on Banks grass mite artificially infested on hybrids and resident spider mite populations. Results showed that water-stressed drought-tolerant hybrids had significantly lower Banks grass mite and resident spider mite populations than water-stressed drought-susceptible hybrids. Interestingly, water-stressed drought-tolerant hybrids had equal Banks grass mite populations to drought-susceptible and drought-tolerant hybrids under optimal irrigation. We posit that planting drought-tolerant hybrids may suppress spider mite outbreaks in water-challenged areas.


Assuntos
Ácaros , Tetranychidae , Animais , Desidratação , Secas , Zea mays
2.
Front Plant Sci ; 9: 1222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186298

RESUMO

While substantial progress has been made in understanding defense responses of cereals to insect herbivores, comparatively little is known about responses to feeding by spider mites. Nevertheless, several spider mite species, including the generalist Tetranychus urticae and the grass specialist Oligonychus pratensis, cause damage on cereals such as maize and wheat, especially during drought stress. To understand defense responses of cereals to spider mites, we characterized the transcriptomic responses of maize and barley to herbivory by both mite species, and included a wounding control against which modulation of defenses could be tested. T. urticae and O. pratensis induced highly correlated changes in gene expression on both maize and barley. Within 2 h, hundreds of genes were upregulated, and thousands of genes were up- or downregulated after 24 h. In general, expression changes were similar to those induced by wounding, including for genes associated with jasmonic acid biosynthesis and signaling. Many genes encoding proteins involved in direct defenses, or those required for herbivore-induced plant volatiles, were strongly upregulated in response to mite herbivory. Further, biosynthesis genes for benzoxazinoids, which are specialized compounds of Poaceae with known roles in deterring insect herbivores, were induced in maize. Compared to chewing insects, spider mites are cell content feeders and cause grossly different patterns of tissue damage. Nonetheless, the gene expression responses of maize to both mite herbivores, including for phytohormone signaling pathways and for the synthesis of the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside, a known defensive metabolite against caterpillars, resembled those reported for a generalist chewing insect, Spodoptera exigua. On maize plants harboring mutations in several benzoxazinoid biosynthesis genes, T. urticae performance dramatically increased compared to wild-type plants. In contrast, no difference in performance was observed between mutant and wild-type plants for the specialist O. pratensis. Collectively, our data provide little evidence that maize and barley defense responses differentiate herbivory between T. urticae and O. pratensis. Further, our work suggests that the likely route to specialization for O. pratensis involved the evolution of a robust mechanism to cope with the benzoxazinoid defenses of its cereal hosts.

3.
PLoS One ; 13(2): e0191536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29489819

RESUMO

Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient.


Assuntos
Neonicotinoides/farmacologia , Poaceae/parasitologia , Estresse Fisiológico , Tetranychidae/efeitos dos fármacos , Animais , Secas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...