Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
J Phys Chem B ; 127(5): 1197-1208, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696698

RESUMO

The paper presents the results, which are consistent within 2%, obtained both in the simulation of molecular dynamics and in the experiment on the study of the kinetic properties of molten FLiNaK with addition of lanthanide fluorides. The parameters of the Born-Huggins-Meier potential for the interaction of CeF3 or NdF3 with FLiNaK components are first calculated using the ab initio approach. The enthalpy of the system with dissolved CeF3 or NdF3 calculated in the model increases by ∼4.4% over the entire temperature range studied (800 ≤ T ≤ 1020 K). The self-diffusion coefficients of the molten salt components are calculated from the Einstein relation and also estimated from the shear viscosity data. The temperature dependences of the shear viscosity of molten FLiNaK as well as FLiNaK with additions of 15 mol % CeF3 or NdF3 are determined experimentally and by calculation. In addition, the dependence of shear viscosity on the concentration of CeF3 and NdF3 in FLiNaK is measured and calculated. The linear growth of the shear viscosity with the CeF3 and NdF3 concentrations is obtained. Experimental dependence is in good agreement with the simulated results in the case of NdF3, and there is the discrepancy while CeF3 addition. An analytical approximation of the temperature and concentration dependences for the viscosity of molten FliNaK and for the calculated self-diffusion coefficients of constituent elements is proposed. Linear approximation of temperature dependence of the self-diffusion coefficients of similar components in the corresponding extended systems is presented.

2.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342321

RESUMO

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

3.
Phys Chem Chem Phys ; 24(41): 25426-25433, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36250488

RESUMO

On the basis of first-principles calculations, we investigate the absorption of fluorine and chlorine on ferromagnetic monolayer CrN focusing on the mechanism of spin reorientation. We use density functional theory in combination with the spin Hamiltonian approach to study the electronic and magnetic properties of monolayer CrN upon single-side adsorption of F and Cl atoms. While the electronic structure of ferromagnetic CrN remains half-metallic after functionalization, its preferred axis of magnetization is rotated toward the in-plane direction due to the orbital moment suppression. The half-coverage of CrN is found to be thermodynamically stable and ferromagnetically ordered at room temperature. Our findings demonstrate the possibility of altering the magnetic properties of a two-dimensional magnet after the adsorption of F and Cl, which opens a route to the detection of these gases using magnetic or optical measurements.

4.
Mol Biol ; 56(2): 229-250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35440827

RESUMO

Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S­adenosyl­L­methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.

5.
Mol Biol (Mosk) ; 56(2): 296-319, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35403621

RESUMO

Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S-adenosyl-L-methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.


Assuntos
Metiltransferases , S-Adenosilmetionina , DNA/química , Humanos , Metionina , Metiltransferases/genética , Metiltransferases/metabolismo , RNA , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
6.
Phys Rev Lett ; 127(9): 093202, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506178

RESUMO

The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of iodomethane (CH_{3}I) by ultraintense (∼10^{19} W/cm^{2}) x-ray pulses at 8.3 keV, demonstrating how these dynamics depend on the x-ray pulse energy and duration. We show that the timing of multiple ionization steps leading to a particular reaction product and, thus, the product's final kinetic energy, is determined by the pulse duration rather than the pulse energy or intensity. While the overall degree of ionization is mainly defined by the pulse energy, our measurement reveals that the yield of the fragments with the highest charge states is enhanced for short pulse durations, in contrast to earlier observations for atoms and small molecules in the soft x-ray domain. We attribute this effect to a decreased charge transfer efficiency at larger internuclear separations, which are reached during longer pulses.

7.
Phys Rev Lett ; 123(17): 176401, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702262

RESUMO

We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping (∼10^{13} cm^{-2}) due to hexagonal warping of the Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching ∼1 cm^{2} V^{-1} s^{-1} at 100 K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.

8.
Vet World ; 12(9): 1491-1498, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31749587

RESUMO

BACKGROUND: Dilated cardiomyopathy is common in dogs. This form of cardiomyopathy is the main cause of death due to heart disease in dogs. Death can occur suddenly in clinically normal animals as a result of the progression of congestive heart failure (CHF). The pathogenesis of heart failure syndrome in dogs with dilated cardiomyopathy involves activation of the neurohumoral system and immune-mediated inflammation, which leads to further progression of the condition. Heart failure syndrome in dogs with dilated cardiomyopathy is caused by the progressive loss of cardiomyocytes, apoptosis, remodeling of the left ventricle, systolic and diastolic dysfunction, arrhythmias, reduced cerebral blood flow, the involvement of other key internal organs, and intestinal dysbiosis. AIM: This study aimed to determine the immunological and inflammatory mechanisms surrounding the development of heart failure syndrome in dogs with dilated cardiomyopathy. MATERIALS AND METHODS: The subjects of this study were dogs with a dilated form of cardiomyopathy (n=159), complicated by various functional classes of heart failure syndrome. Evaluation of myocardial remodeling, systolic function, and systemic hemodynamics was performed using EMP-860 Vet and PU-2200V ultrasound scanners according to the standard technique. Electrocardiography was performed with all dogs in right lateral recumbency using the EK1T-04 Midas electrocardiograph (50 mm/s speed and 1 mV gain = 1 cm). RESULTS: In some affected animals, especially in cases of compensated dilated cardiomyopathy, leukocytosis was noted. In patients with dilated cardiomyopathy complicated by heart failure syndrome of various functional classes, the number of neutrophils was significantly increased, and the number of lymphocytes was decreased by 1.9-2.1 times when compared with those in clinically normal animals. In dogs with dilated cardiomyopathy, neutrophilic leukocytosis develops with a simple regenerative shift to the left. The results of immunological studies indicate that dogs with dilated cardiomyopathy develop T lymphocytopenia as compared with clinically normal animals. CONCLUSION: The central component of heart failure syndrome in dogs with dilated cardiomyopathy is the activation of the neurohumoral system and immune-mediated inflammation. The development of CHF in dogs with dilated cardiomyopathy is caused by the progressive loss of cardiomyocytes, apoptosis, remodeling of the left ventricle, systolic and diastolic dysfunction, arrhythmias, reduced cerebral blood flow, involvement of other key internal organs, and intestinal dysbiosis.

9.
Phys Rev Lett ; 123(2): 023201, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386513

RESUMO

We present a comprehensive experimental and theoretical study on superfluorescence in the extreme ultraviolet wavelength regime. Focusing a free-electron laser pulse in a cell filled with Xe gas, the medium is quasi-instantaneously population inverted by 4d-shell ionization on the giant resonance followed by Auger decay. On the timescale of ∼10 ps to ∼100 ps (depending on parameters) a macroscopic polarization builds up in the medium, resulting in superfluorescent emission of several Xe lines in the forward direction. As the number of emitters in the system is increased by either raising the pressure or the pump-pulse energy, the emission yield grows exponentially over four orders of magnitude and reaches saturation. With increasing yield, we observe line broadening, a manifestation of superfluorescence in the spectral domain. Our novel theoretical approach, based on a full quantum treatment of the atomic system and the irradiated field, shows quantitative agreement with the experiment and supports our interpretation.

10.
Opt Lett ; 44(5): 1129-1132, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821788

RESUMO

Low- and ultralow-energy tightly focused 200 fs, 515 nm donut-shaped laser pulses at 0.25 and 0.65 NA focusing were used for single-shot ablative pulse-energy scalable nanopatterning of 50 nm thick gold film and the following plasmonic excitation of dye monolayer photoluminescence (PL) in the fabricated nanostructures, respectively. The same pulses at much lower, non-ablative nanojoule energies, and the same focusing and linear, azimuthal, or radial polarizations provided efficient spectrally and symmetry-matched excitation of both localized and delocalized surface electromagnetic modes in the separate, ring-like through holes and their arrays in the film envisioned by our modeling, thus resulting in a polarization-sensitive yield of rhodamine 6G dye PL. The demonstrated consistency between the symmetries of the donut-shaped low-energy photo-exciting laser beam, its polarization state, and the donut-shaped gold nanostructures, produced by the same beam at high, ablative pulse energies, paves the way to smart, self-consistent nanofabrication and plasmonic sensing, when the structured light interacts with the consistently structured matter.

11.
Phys Chem Chem Phys ; 21(26): 14090-14102, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30688948

RESUMO

We report the results of a time-resolved coincident ion momentum imaging experiment probing nuclear wave packet dynamics in the strong-field ionization and dissociation of iodomethane (CH3I), a prototypical polyatomic system for photochemistry and ultrafast laser science. By measuring yields, kinetic energies, and angular distributions of CH3+ + I+ and CH3+ + I++ ion pairs as a function of the delay between two 25 fs, 790 nm pump and probe pulses, we map both, bound and dissociating nuclear wave packets in intermediate cationic states, thereby tracking different ionization and dissociation pathways. In both channels, we find oscillatory features with a 130 fs periodicity resulting from vibrational motion (C-I symmetric stretch mode) in the first electronically excited state of CH3I+. This vibrational wave packet dephases within 1 ps, in good agreement with a simple wave packet propagation model. Our results indicate that the first excited cationic state plays a key role in the dissociative ionization of CH3I and that it represents an important intermediate in the sequential double and multiple ionization at moderate intensities.

12.
Phys Rev Lett ; 120(21): 216401, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883184

RESUMO

Electron correlation effects are studied in ZrSiS using a combination of first-principles and model approaches. We show that basic electronic properties of ZrSiS can be described within a two-dimensional lattice model of two nested square lattices. A high degree of electron-hole symmetry characteristic for ZrSiS is one of the key features of this model. Having determined model parameters from first-principles calculations, we then explicitly take electron-electron interactions into account and show that, at moderately low temperatures, ZrSiS exhibits excitonic instability, leading to the formation of a pseudogap in the electronic spectrum. The results can be understood in terms of Coulomb-interaction-assisted pairing of electrons and holes reminiscent of that of an excitonic insulator. Our finding allows us to provide a physical interpretation of the unusual mass enhancement of charge carriers in ZrSiS recently observed experimentally.

13.
Phys Rev Lett ; 120(10): 103001, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570318

RESUMO

A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O^{+}+C^{+}+S^{+} and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO^{2+} or CS^{2+}, before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS^{3+} breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

14.
J Phys Condens Matter ; 29(33): 335801, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28639558

RESUMO

Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin polarization of oxygen is usually ignored. In the conventional model based on the Anderson principle, oxygen effects are considered as a property of the TM ion and only TM interactions are relevant. Here, we perform a systematic comparison between two approaches for spin polarization on oxygen in typical TM oxides. To this end, we calculate the exchange interactions in NiO, MnO and hematite (Fe2O3) for different magnetic configurations using the magnetic force theorem. We consider the full spin Hamiltonian including oxygen sites, and also derive an effective model where the spin polarization on oxygen renormalizes the exchange interactions between TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic state if spin polarization on oxygen is neglected, resulting in non-Heisenberg behavior. In contrast, the inclusion of spin polarization in NiO makes the Heisenberg model more applicable. Just the opposite, MnO behaves as a Heisenberg magnet when oxygen spin polarization is neglected, but shows strong non-Heisenberg effects when spin polarization on oxygen is included. In hematite, both models result in non-Heisenberg behavior. The general applicability of the magnetic force theorem as well as the Heisenberg model to TM oxides is discussed.

15.
Nature ; 546(7656): 129-132, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569799

RESUMO

X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 1020 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 1020 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.


Assuntos
Cristalografia/métodos , Elétrons , Lasers , Proteínas/química , Raios X , Iodo/química , Cinética , Fótons , Conformação Proteica , Eletricidade Estática , Fatores de Tempo
16.
Faraday Discuss ; 194: 537-562, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27797386

RESUMO

We studied the electronic and nuclear dynamics of I-containing organic molecules induced by intense hard X-ray pulses at the XFEL facility SACLA in Japan. The interaction with the intense XFEL pulse causes absorption of multiple X-ray photons by the iodine atom, which results in the creation of many electronic vacancies (positive charges) via the sequential electronic relaxation in the iodine, followed by intramolecular charge redistribution. In a previous study we investigated the subsequent fragmentation by Coulomb explosion of the simplest I-substituted hydrocarbon, iodomethane (CH3I). We carried out three-dimensional momentum correlation measurements of the atomic ions created via Coulomb explosion of the molecule and found that a classical Coulomb explosion model including charge evolution (CCE-CE model), which accounts for the concerted dynamics of nuclear motion and charge creation/charge redistribution, reproduces well the observed momentum correlation maps of fragment ions emitted after XFEL irradiation. Then we extended the study to 5-iodouracil (C4H3IN2O2, 5-IU), which is a more complex molecule of biological relevance, and confirmed that, in both CH3I and 5-IU, the charge build-up takes about 10 fs, while the charge is redistributed among atoms within only a few fs. We also adopted a self-consistent charge density-functional based tight-binding (SCC-DFTB) method to treat the fragmentations of highly charged 5-IU ions created by XFEL pulses. Our SCC-DFTB modeling reproduces well the experimental and CCE-CE results. We have also investigated the influence of the nuclear dynamics on the charge redistribution (charge transfer) using nonadiabatic quantum-mechanical molecular dynamics (NAQMD) simulation. The time scale of the charge transfer from the iodine atomic site to the uracil ring induced by nuclear motion turned out to be only ∼5 fs, indicating that, besides the molecular Auger decay in which molecular orbitals delocalized over the iodine site and the uracil ring are involved, the nuclear dynamics also play a role for ultrafast charge redistribution. The present study illustrates that the CCE-CE model as well as the SCC-DFTB method can be used for reconstructing the positions of atoms in motion, in combination with the momentum correlation measurement of the atomic ions created via XFEL-induced Coulomb explosion of molecules.

17.
Phys Rev Lett ; 117(5): 059902, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517796

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.116.256804.

18.
Phys Rev Lett ; 116(24): 246401, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367397

RESUMO

We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13} cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (µ_{xx}/µ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300 K), the electron mobility is found to be significantly more anisotropic (µ_{xx}/µ_{yy}∼6.2). Absolute values of µ_{xx} do not exceed 250 (700) cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

19.
Phys Rev Lett ; 116(25): 256804, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391741

RESUMO

To date germanene has only been synthesized on metallic substrates. A metallic substrate is usually detrimental for the two-dimensional Dirac nature of germanene because the important electronic states near the Fermi level of germanene can hybridize with the electronic states of the metallic substrate. Here we report the successful synthesis of germanene on molybdenum disulfide (MoS_{2}), a band gap material. Preexisting defects in the MoS_{2} surface act as preferential nucleation sites for the germanene islands. The lattice constant of the germanene layer (3.8±0.2 Å) is about 20% larger than the lattice constant of the MoS_{2} substrate (3.16 Å). Scanning tunneling spectroscopy measurements and density functional theory calculations reveal that there are, besides the linearly dispersing bands at the K points, two parabolic bands that cross the Fermi level at the Γ point.

20.
Nat Commun ; 7: 11652, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27212390

RESUMO

New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...