Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(3): e2308030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822038

RESUMO

Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3 N4 , hP126-C3 N4 , and tI24-CN2 , in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.

2.
Phys Rev Lett ; 130(19): 196401, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243643

RESUMO

We present the first experimental evidence of a topological phase transition in a monoelemental quantum spin Hall insulator. Particularly, we show that low-buckled epitaxial germanene is a quantum spin Hall insulator with a large bulk gap and robust metallic edges. Applying a critical perpendicular electric field closes the topological gap and makes germanene a Dirac semimetal. Increasing the electric field further results in the opening of a trivial gap and disappearance of the metallic edge states. This electric field-induced switching of the topological state and the sizable gap make germanene suitable for room-temperature topological field-effect transistors, which could revolutionize low-energy electronics.

3.
Phys Rev Lett ; 128(10): 106801, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35333070

RESUMO

Orbital memory is defined by two stable valencies that can be electrically switched and read out. To explore the influence of an electric field on orbital memory, we studied the distance-dependent influence of an atomic Cu donor on the state favorability of an individual Co atom on black phosphorus. Using low temperature scanning tunneling microscopy and spectroscopy, we characterized the electronic properties of individual Cu donors, corroborating this behavior with ab initio calculations based on density functional theory. We studied the influence of an individual donor on the charging energy and stochastic behavior of an individual Co atom. We found a strong impact on the state favorability in the stochastic limit. These findings provide quantitative information about the influence of local electric fields on atomic orbital memory.

4.
ACS Nano ; 16(4): 6541-6551, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35285624

RESUMO

The transition metal dichalcogenide (TMD)-metal interfaces constitute an active part of TMD-based electronic devices with optimized performances. Despite their decisive role, current strategies for nanoscale electronic tuning remain limited. Here, we demonstrate electronic tuning in the WSe2/Au interface by twist engineering, capable of modulating the WSe2 carrier doping from an intrinsic p-type to n-type. Scanning tunneling microscope/spectroscopy gives direct evidence of enhanced interfacial interaction induced doping in WSe2 as the twist angle with respect to the topmost (100) lattice of gold changing from 15 to 0°. Taking advantage of the strong coupling interface achieved this way, we have moved a step further to realize an n-p-n-type WSe2 homojunction. The intrinsic doping of WSe2 can be recovered by germanium intercalation. Density functional theory calculations confirm that twist angle and intercalation-dependent charge transfer related doping are involved in our observations. Our work offers ways for electronically tuning the metal-2D semiconductor interface.

5.
Phys Rev Lett ; 126(17): 175501, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988447

RESUMO

High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN_{4}. A triclinic phase of beryllium tetranitride tr-BeN_{4} was synthesized from elements at ∼85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN_{4} layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated π systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN_{4} layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN_{4} layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.

6.
Phys Rev Lett ; 123(21): 216403, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809169

RESUMO

Electronic screening can have direct consequences for structural arrangements on the nanoscale, such as on the periodic ordering of adatoms on a surface. So far, such ordering phenomena have been explained in terms of isotropic screening of free electronlike systems. Here, we directly illustrate the structural consequences of anisotropic screening, making use of a highly anisotropic two-dimensional electron gas (2DEG) near the surface of black phosphorous. The presence of the 2DEG and its filling is controlled by adsorbed potassium atoms, which simultaneously serve to probe the electronic ordering. Using scanning tunneling microscopy, we show that the anisotropic screening leads to the formation of potassium chains with a well-defined orientation and spacing. We quantify the mean interaction potential utilizing statistical methods and find that the dimensionality and anisotropy of the screening is consistent with the presence of a band bending-induced 2DEG near the surface. The electronic dispersion of the 2DEG inferred by electronic ordering is consistent with that measured by angle-resolved photoemission spectroscopy.

7.
Nat Commun ; 9(1): 3904, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254221

RESUMO

A magnetic atom epitomizes the scaling limit for magnetic information storage. Individual atomic spins have recently exhibited magnetic remanence, a requirement for magnetic memory. However, such memory has been only realized on thin insulating surfaces, removing potential tunability via electronic gating or exchange-driven magnetic coupling. Here, we show a previously unobserved mechanism for single-atom magnetic storage based on bistability in the orbital population, or so-called valency, of an individual Co atom on semiconducting black phosphorus (BP). Ab initio calculations reveal that distance-dependent screening from the BP surface stabilizes the two distinct valencies, each with a unique orbital population, total magnetic moment, and spatial charge density. Excellent correspondence between the measured and predicted charge densities reveal that such orbital configurations can be accessed and manipulated without a spin-sensitive readout mechanism. This orbital memory derives stability from the energetic barrier to atomic relaxation, demonstrating the potential for high-temperature single-atom information storage.

8.
Nano Lett ; 17(9): 5222-5228, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28741958

RESUMO

Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS2 or WS2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe2 and WSe2, our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe2 compared to processing in air.

9.
Nano Lett ; 17(6): 3607-3612, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28481547

RESUMO

Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of the surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.


Assuntos
Nanoestruturas/química , Fósforo/química , Anisotropia , Cristalização , Microscopia de Tunelamento/métodos , Modelos Químicos , Tamanho da Partícula , Fenômenos Físicos , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...