Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713032

RESUMO

We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.

2.
J Phys Chem A ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709555

RESUMO

The dynamics of cyclopentadiene (CP) following optical excitation at 243 nm was investigated by time-resolved pump-probe X-ray scattering using 16.2 keV X-rays at the Linac Coherent Light Source (LCLS). We present the first ultrafast structural evidence that the reaction leads directly to the formation of bicyclo[2.1.0]pentene (BP), a strained molecule with three- and four-membered rings. The bicyclic compound decays via a thermal backreaction to the vibrationally hot CP with a time constant of 21 ± 3 ps. A minor channel leads to ring-opened structures on a subpicosecond time scale.

3.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38616653

RESUMO

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

4.
Phys Rev Lett ; 132(12): 123201, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579208

RESUMO

Coulomb explosion imaging (CEI) with x-ray free electron lasers has recently been shown to be a powerful method for obtaining detailed structural information of gas-phase planar ring molecules [R. Boll et al., X-ray multiphoton-induced Coulomb explosion images complex single molecules, Nat. Phys. 18, 423 (2022).NPAHAX1745-247310.1038/s41567-022-01507-0]. In this Letter, we investigate the potential of CEI driven by a tabletop laser and extend this approach to differentiating three-dimensional structures. We study the static CEI patterns of planar and nonplanar organic molecules that resemble the structures of typical products formed in ring-opening reactions. Our results reveal that each molecule exhibits a well-localized and distinctive pattern in three-dimensional fragment-ion momentum space. We find that these patterns yield direct information about the molecular structures and can be qualitatively reproduced using a classical Coulomb explosion simulation. Our findings suggest that laser-induced CEI can serve as a robust method for differentiating molecular structures of organic ring and chain molecules. As such, it holds great promise as a method for following ultrafast structural changes, e.g., during ring-opening reactions, by tracking the motion of individual atoms in pump-probe experiments.

5.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307994

RESUMO

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

6.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349638

RESUMO

The absolute photoabsorption cross sections of norbornadiene (NBD) and quadricyclane (QC), two isomers with chemical formula C7H8 that are attracting much interest for solar energy storage applications, have been measured from threshold up to 10.8 eV using the Fourier transform spectrometer at the SOLEIL synchrotron radiation facility. The absorption spectrum of NBD exhibits some sharp structure associated with transitions into Rydberg states, superimposed on several broad bands attributable to valence excitations. Sharp structure, although less pronounced, also appears in the absorption spectrum of QC. Assignments have been proposed for some of the absorption bands using calculated vertical transition energies and oscillator strengths for the electronically excited states of NBD and QC. Natural transition orbitals indicate that some of the electronically excited states in NBD have a mixed Rydberg/valence character, whereas the first ten excited singlet states in QC are all predominantly Rydberg in the vertical region. In NBD, a comparison between the vibrational structure observed in the experimental 11B1-11A1 (3sa1 ← 5b1) band and that predicted by Franck-Condon and Herzberg-Teller modeling has necessitated a revision of the band origin and of the vibrational assignments proposed previously. Similar comparisons have encouraged a revision of the adiabatic first ionization energy of NBD. Simulations of the vibrational structure due to excitation from the 5b2 orbital in QC into 3p and 3d Rydberg states have allowed tentative assignments to be proposed for the complex structure observed in the absorption bands between ∼5.4 and 7.0 eV.

7.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317439

RESUMO

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

8.
Nat Commun ; 15(1): 74, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168047

RESUMO

An essential problem in photochemistry is understanding the coupling of electronic and nuclear dynamics in molecules, which manifests in processes such as hydrogen migration. Measurements of hydrogen migration in molecules that have more than two equivalent hydrogen sites, however, produce data that is difficult to compare with calculations because the initial hydrogen site is unknown. We demonstrate that coincidence ion-imaging measurements of a few deuterium-tagged isotopologues of ethanol can determine the contribution of each initial-site composition to hydrogen-rich fragments following strong-field double ionization. These site-specific probabilities produce benchmarks for calculations and answer outstanding questions about photofragmentation of ethanol dications; e.g., establishing that the central two hydrogen atoms are 15 times more likely to abstract the hydroxyl proton than a methyl-group proton to form H[Formula: see text] and that hydrogen scrambling, involving the exchange of hydrogen between different sites, is important in H2O+ formation. The technique extends to dynamic variables and could, in principle, be applied to larger non-cyclic hydrocarbons.

9.
J Phys Chem Lett ; 14(18): 4372-4380, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37140167

RESUMO

Ultrafast H2+ and H3+ formation from ethanol is studied using pump-probe spectroscopy with an extreme ultraviolet (XUV) free-electron laser. The first pulse creates a dication, triggering H2 roaming that leads to H2+ and H3+ formation, which is disruptively probed by a second pulse. At photon energies of 28 and 32 eV, the ratio of H2+ to H3+ increases with time delay, while it is flat at a photon energy of 70 eV. The delay-dependent effect is ascribed to a competition between electron and proton transfer. High-level quantum chemistry calculations show a flat potential energy surface for H2 formation, indicating that the intermediate state may have a long lifetime. The ab initio molecular dynamics simulation confirms that, in addition to the direct emission, a small portion of H2 undergoes a roaming mechanism that leads to two competing pathways: electron transfer from H2 to C2H4O2+ and proton transfer from C2H4O2+ to H2.

10.
Phys Chem Chem Phys ; 25(14): 9999-10010, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960727

RESUMO

The UV-induced photodissociation dynamics of iodomethane (CH3I) in its A-band are investigated by time-resolved coincident ion momentum imaging using strong-field ionization as a probe. The delay-dependent kinetic energy distribution of the photofragments resulting from double ionization of the molecule maps the cleavage of the carbon-iodine bond and shows how the existence of a potential well in the di-cationic potential energy surfaces shapes the observed distribution at small pump-probe delays. Furthermore, the competition between single- and multi-photon excitation and ionization of the molecule is studied as a function of the intensity of the UV-pump laser pulse. Two-photon excitation to Rydberg states is identified by tracking the transformation of the delay-dependent singly-charged iodomethane yield from a pure Gaussian distribution at low intensity to a Gaussian with an exponentially decaying tail at higher intensities. Dissociative ionization induced by absorption of three UV photons is resolved as an additional delay-dependent feature in the kinetic energy of the fragment ions detected in coincidence.

11.
Phys Chem Chem Phys ; 24(45): 27631-27644, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36321442

RESUMO

We investigate the two- and three-body fragmentation of tribromomethane (bromoform, CHBr3) resulting from multiple ionization by 28-femtosecond near-infrared laser pulses with a peak intensity of 6 × 1014 W cm-2. The analysis focuses on channels consisting exclusively of ionic fragments, which are measured by coincidence momentum imaging. The dominant two-body fragmentation channel is found to be Br+ + CHBr2+. Weaker HBr+ + CBr2+, CHBr+ + Br2+, CHBr2+ + Br2+, and Br+ + CHBr22+ channels, some of which require bond rearrangement prior to or during the fragmentation, are also observed. The dominant three-body fragmentation channel is found to be Br+ + Br+ + CHBr+. This channel includes both concerted and sequential fragmentation pathways, which we identify using the native frames analysis method. We compare the measured kinetic energy release and momentum correlations with the results of classical Coulomb explosion simulations and discuss the possible isomerization of CHBr3 to BrCHBr-Br (iso-CHBr3) prior to the fragmentation.

12.
Phys Chem Chem Phys ; 24(37): 22699-22709, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106844

RESUMO

We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.

13.
J Phys Chem Lett ; 13(25): 5845-5853, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35727076

RESUMO

The Coulomb explosion of tribromomethane (bromoform, CHBr3) induced by 28 fs near-infrared laser pulses is investigated by three-dimensional coincidence ion momentum imaging. We focus on the fragmentation into three, four, and five ionic fragments measured in coincidence and present different ways of visualizing the three-dimensional momentum correlations. We show that the experimentally observed momentum correlations for 4- and 5-fold coincidences are well reproduced by classical Coulomb explosion simulations and contain information about the structure of the parent molecule that could be used to differentiate structural isomers formed, for example, in a pump-probe experiment. Our results thus provide a clear path toward visualizing structural dynamics in polyatomic molecules by strong-field-induced Coulomb explosion imaging.


Assuntos
Lasers , Trialometanos , Íons
14.
J Chem Phys ; 156(4): 041102, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105059

RESUMO

Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques. Here, we report on the size distributions of both pure and doped droplets collected from single-shot x-ray imaging and produced from the free-jet expansion of helium through a 5 µm diameter nozzle at 20 bars and nozzle temperatures ranging from 4.2 to 9 K. This work extends the measurement of large helium nanodroplets containing 109-1011 atoms, which are shown to follow an exponential size distribution. Additionally, we demonstrate that the size distributions of the doped droplets follow those of the pure droplets at the same stagnation condition but with smaller average sizes.

15.
Faraday Discuss ; 228(0): 571-596, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33629700

RESUMO

The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pump-probe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.

16.
Faraday Discuss ; 228(0): 39-59, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33565561

RESUMO

We investigate the fragmentation and isomerization of toluene molecules induced by strong-field ionization with a femtosecond near-infrared laser pulse. Momentum-resolved coincidence time-of-flight ion mass spectrometry is used to determine the relative yield of different ionic products and fragmentation channels as a function of laser intensity. Ultrafast electron diffraction is used to capture the structure of the ions formed on a picosecond time scale by comparing the diffraction signal with theoretical predictions. Through the combination of the two measurements and theory, we are able to determine the main fragmentation channels and to distinguish between ions with identical mass but different structures. In addition, our diffraction measurements show that the independent atom model, which is widely used to analyze electron diffraction patterns, is not a good approximation for diffraction from ions. We show that the diffraction data is in very good agreement with ab initio scattering calculations.

17.
Sci Rep ; 11(1): 505, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436816

RESUMO

Molecules can sequentially absorb multiple photons when irradiated by an intense X-ray pulse from a free-electron laser. If the time delay between two photoabsorption events can be determined, this enables pump-probe experiments with a single X-ray pulse, where the absorption of the first photon induces electronic and nuclear dynamics that are probed by the absorption of the second photon. Here we show a realization of such a single-pulse X-ray pump-probe scheme on N[Formula: see text] molecules, using the X-ray induced dissociation process as an internal clock that is read out via coincident detection of photoelectrons and fragment ions. By coincidence analysis of the kinetic energies of the ionic fragments and photoelectrons, the transition from a bound molecular dication to two isolated atomic ions is observed through the energy shift of the inner-shell electrons. Via ab-initio simulations, we are able to map characteristic features in the kinetic energy release and photoelectron spectrum to specific delay times between photoabsorptions. In contrast to previous studies where nuclear motions were typically revealed by measuring ion kinetics, our work shows that inner-shell photoelectron energies can also be sensitive probes of nuclear dynamics, which adds one more dimension to the study of light-matter interactions with X-ray pulses.

18.
J Phys Chem Lett ; 11(23): 10205-10211, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206545

RESUMO

Conformational isomerism plays a crucial role in defining the physical and chemical properties and biological activity of molecules ranging from simple organic compounds to complex biopolymers. However, it is often a significant challenge to differentiate and separate these isomers experimentally as they can easily interconvert due to their low rotational energy barrier. Here, we use the momentum correlation of fragment ions produced after inner-shell photoionization to distinguish conformational isomers of 1,2-dibromoethane (C2H4Br2). We demonstrate that the three-body breakup channel, C2H4+ + Br+ + Br+, contains signatures of both sequential and concerted breakup, which are decoupled to distinguish the geometries of two conformational isomers and to quantify their relative abundance. The sensitivity of our method to quantify these yields is established by measuring the relative abundance change with sample temperature, which agrees well with calculations. Our study paves the way for using Coulomb explosion imaging to track subtle molecular structural changes.


Assuntos
Dibrometo de Etileno/química , Teoria da Densidade Funcional , Conformação Molecular , Processos Fotoquímicos , Análise Espectral , Estereoisomerismo
19.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124863

RESUMO

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

20.
J Chem Phys ; 152(8): 084307, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113333

RESUMO

We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV (λ ≈ 130 pm) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the Cornell-SLAC pixel array detector, and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to be within 5%. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data, which should be readily available at upcoming high-repetition-rate facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...