Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
EBioMedicine ; 86: 104367, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410115

RESUMO

BACKGROUND: Normative values for different morphometric parameters of muscle fibres during paediatric development, i.e. from 0 to 18 years, are currently unavailable. They would be of major importance to accurately evaluate pathological changes and could be used as reference biomarkers for evaluating treatment response in clinical trials, or physiological adjustments in sports or ageing. METHODS: Data were derived from 482 images with a total of 33 094 fibres from 10 µm cross-sections of snap-frozen muscle from 83 deltoid muscle biopsies from patients, 0-18 years, without neuromuscular pathology stained with ATPase 9.4. Data was acquired and analysed with patented image analysis algorithms from "CARPACCIO.cloud". Several parameters were extracted or calculated, including cross-sectional area (CSA), fibre type, circularity, as well as the Minimum diameter of Feret (MinFeret). FINDINGS: This study illustrates changes in quantitative parameters for muscle morphology over the course of paediatric development and the pivotal changes occurring around puberty. Only fibre size parameters (MinFeret, CSA) are dependent on gender, and only after puberty. All other parameters vary in a similar manner for females and males. The proportion of type 1 fibres is essentially constant from birth to age 10, decreasing to ≈40% by age 18. Circularity decreases with age, to plateau after age 10 for both fibre types. INTERPRETATION: Normative values and reference charts for muscle fibre types in this age range have been generated to allow comparison of data from patients in pathology laboratories working on neuromuscular diseases. FUNDING: BPI FRANCE, PULSALYS, Association de l'Institut de Myologie, French National Research Agency (ANR), LABEX CORTEX of Université de Lyon.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Masculino , Feminino , Humanos , Criança , Adolescente , Estudos Transversais , Biópsia , Envelhecimento , Músculo Esquelético
3.
Pharmacol Res Perspect ; 9(5): e00857, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34632725

RESUMO

Clinically used botulinum neurotoxins (BoNTs) are natural products of Clostridium botulinum. A novel, recombinant BoNT type A1 (rBoNT/A1; IPN10260) has been synthesized using the native amino acid sequence expressed in Escherichia coli and has previously been characterized in vitro and ex vivo. Here, we aimed to characterize rBoNT/A1 in vivo and evaluate its effects on skeletal muscle. The properties of rBoNT/A1 following single, intramuscular administration were evaluated in the mouse and rat digit abduction score (DAS) assays and compared with those of natural BoNT/A1 (nBoNT/A1). rBoNT/A1-injected tibialis anterior was assessed in the in situ muscle force test in rats. rBoNT/A1-injected gastrocnemius lateralis (GL) muscle was assessed in the compound muscle action potential (CMAP) test in rats. The rBoNT/A1-injected GL muscle was evaluated for muscle weight, volume, myofiber composition and immunohistochemical detection of cleaved SNAP25 (c-SNAP25). Results showed that rBoNT/A1 and nBoNT/A1 were equipotent and had similar onset and duration of action in both mouse and rat DAS assays. rBoNT/A1 caused a dose-dependent inhibition of muscle force and a rapid long-lasting reduction in CMAP amplitude that lasted for at least 30 days. Dose-dependent reductions in GL weight and volume and increases in myofiber atrophy were accompanied by immunohistochemical detection of c-SNAP25. Overall, rBoNT/A1 and nBoNT/A1 exhibited similar properties following intramuscular administration. rBoNT/A1 inhibited motoneurons neurotransmitter release, which was robust, long-lasting, and accompanied by cleavage of SNAP25. rBoNT/A1 is a useful tool molecule for comparison with current natural and future modified recombinant neurotoxins products.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Injeções Intramusculares , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Tamanho do Órgão , Ratos , Proteína 25 Associada a Sinaptossoma/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/metabolismo
4.
Int J Mol Sci ; 18(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338624

RESUMO

Membrane microdomains or "lipid rafts" have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1 and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated protein kinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequestering the cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis.


Assuntos
Caveolina 1/metabolismo , Núcleo Celular/metabolismo , Microdomínios da Membrana/metabolismo , Fator de Crescimento Neural/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Proteína de Ligação a CREB/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Caveolina 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Células PC12 , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/química , Receptor trkA/imunologia , Receptor trkA/metabolismo , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/química , Receptores de Fator de Crescimento Neural/imunologia , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
5.
Front Mol Neurosci ; 8: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25698920

RESUMO

The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5-16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60-80%) and low toxicity (>60% survival) were achieved with robust differentiation in response to Nerve growth factor (NGF). Moreover, 3-50 times fewer cells are needed (6 × 10(4)) compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.

6.
BMC Bioinformatics ; 15 Suppl 14: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472549

RESUMO

BACKGROUND: The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2)protocols. METHODS: We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. RESULTS: The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. CONCLUSIONS: The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.


Assuntos
Ontologias Biológicas , Mineração de Dados , Software , Processamento Eletrônico de Dados , Idioma , Reprodutibilidade dos Testes , Semântica
7.
Mol Cell Proteomics ; 12(7): 1939-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23579184

RESUMO

We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as "bait," allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A-TP2, serving as an example of the usefulness of peptide aptamer technology for investigating signaling pathways.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Calcineurina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Aptâmeros de Peptídeos/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Ratos , Técnicas do Sistema de Duplo-Híbrido
8.
Neural Regen Res ; 7(7): 485-91, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25745432

RESUMO

This study examined the isolation and differentiation of dorsal root ganglion progenitor cells for therapeutic use in neurodegenerative diseases. Rat embryonic dorsal root ganglia progenitors were isolated and purified using the differential adhesion method combined with cytosine arabinoside treatment. After culture in serum-free medium supplemented with B27, basic fibroblast growth factor and epidermal growth factor, these cells remained viable and survived for more than 18 months in vitro. Most cells differentiated to neurons that were immunoreactive for gamma-aminobutyric acid and choline acetyltransferase as detected by immunohistochemical staining. In addition, nerve growth factor and neurotrophic tyrosine kinase receptor expression were also observed in dorsal root ganglion progenitors and differentiated cells. K252a, an inhibitor that blocks nerve growth factor-induced signaling, inhibited cell survival, suggesting the possible existence of a nerve growth factor autocrine loop in these proliferating cells.

9.
Methods Mol Biol ; 535: 373-88, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19377984

RESUMO

Peptide aptamers have primarily been used as research tools to manipulate protein function and study regulatory networks. However, they also find multiple applications in therapeutic research, from target identification and validation to drug discovery. Because of their unbiased combinatorial nature, peptide aptamers interrogate the biological significance of numerous molecular surfaces on target proteins. Their use enables the identification and validation of some of these surfaces as interesting therapeutic targets to pursue. Peptide aptamers can subsequently be used to guide the discovery of small molecule drugs specific for these molecular surfaces.Here, we present a high-throughput screening assay that identifies small molecules that displace interactions between proteins and their cognate peptide aptamers. AptaScreen is a duplex yeast two-hybrid assay featuring two luciferase reporter genes. It can be performed in 96- or 384-well plates and can be fully automated.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Aptâmeros de Peptídeos/uso terapêutico , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/metabolismo , Aptâmeros de Peptídeos/genética , Humanos , Luminescência , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
10.
Mol Biol Cell ; 18(12): 4899-910, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17898081

RESUMO

The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with beta3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)-/- OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP-/- OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP-/- OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ.


Assuntos
Actinas/metabolismo , Receptores de Hialuronatos/metabolismo , Integrina beta3/metabolismo , Osteoclastos/metabolismo , Animais , Reabsorção Óssea , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
11.
Mol Cell Proteomics ; 6(12): 2110-21, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17785351

RESUMO

The study of protein function mostly relies on perturbing regulatory networks by acting upon protein expression levels or using transdominant negative agents. Here we used the Escherichia coli global transcription regulator Fur (ferric uptake regulator) as a case study to compare the perturbations exerted by a gene knock-out, the expression of a dominant negative allele of a gene, and the expression of peptide aptamers that bind a gene product. These three perturbations caused phenotypes that differed quantitatively and qualitatively from one another. The Fur peptide aptamers inhibited the activity of their target to various extents and reduced the virulence of a pathogenic E. coli strain in Drosophila. A genome-wide transcriptome analysis revealed that the "penetrance" of a peptide aptamer was comparable to that of a dominant negative allele but lower than the penetrance of the gene knock-out. Our work shows that comparative analysis of phenotypic and transcriptome responses to different types of perturbation can help decipher complex regulatory networks that control various biological processes.


Assuntos
Alelos , Aptâmeros de Peptídeos/química , Genes Dominantes , Animais , Sequência de Bases , Primers do DNA , Drosophila , Técnicas do Sistema de Duplo-Híbrido
12.
Mol Cell Proteomics ; 6(11): 1842-54, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17617666

RESUMO

The nerve growth factor (NGF)-tyrosine kinase receptor TrkA plays a critical role in various neuronal and non-neuronal cell types by regulating cell survival, differentiation, and proliferation. In breast cancer cells, TrkA stimulation results in the activation of cellular growth, but downstream signaling largely remains to be described. Here we used a proteomics-based approach to identify partners involved in TrkA signaling in breast cancer cells. Wild type and modified TrkA chimeric constructs with green fluorescent protein were transfected in MCF-7 cells, and co-immunoprecipitated proteins were separated by SDS-PAGE before nano-LC-MS/MS analysis. Several TrkA putative signaling partners were identified among which was the DNA repair protein Ku70, which is increasingly reported for its role in cell survival and carcinogenesis. Physiological interaction of Ku70 with endogenous TrkA was induced upon NGF stimulation in non-transfected cells, and co-localization was observed with confocal microscopy. Mass spectrometry analysis and Western blotting of phosphotyrosine immunoprecipitates demonstrated the induction of Ku70 tyrosine phosphorylation upon NGF stimulation. Interestingly no interaction between TrkA and Ku70 was detected in PC12 cells in the absence or presence of NGF, suggesting that it is not involved in the initiation of neuronal differentiation. In breast cancer cells, RNA interference indicated that whereas Ku70 depletion had no direct effect on cell survival, it induced a strong potentiation of apoptosis in TrkA-overexpressing cells. In conclusion, TrkA signaling appears to be proapoptotic in the absence of Ku70, and this protein might therefore play a role in the long time reported ambivalence of tyrosine kinase receptors that can exhibit both anti- and eventually proapoptotic activities.


Assuntos
Antígenos Nucleares/metabolismo , Apoptose , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Sequência de Aminoácidos , Antígenos Nucleares/genética , Apoptose/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Autoantígeno Ku , Dados de Sequência Molecular , Interferência de RNA , Receptor trkA/genética , Transdução de Sinais
13.
J Cell Physiol ; 210(1): 51-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17013810

RESUMO

NGF appears to be involved in spermatogenesis. However, mice lacking NGF or TrkA genes do not survive more than a few days whereas p75(NTR) knockout mice are viable and fertile. Therefore, we addressed the effect of betaNGF on spermatogenesis by using the systems of rat germ cell culture we established previously. betaNGF did not modify the number of Sertoli cells, pachytene spermatocytes, secondary spermatocytes nor the half-life of round spermatids, but increased the number of secondary meiotic metaphases and decreased the number of round spermatids formed in vitro. These effects of betaNGF were reversible and maximal at about 4 x 10(-11) M. Conversely, K252a, a Trk-specific kinase inhibitor, enhanced the number of round spermatids above that of control cultures. The presence of betaNGF and its receptors TrkA and p75(NTR) was investigated in testis sections, in Sertoli cell and germ cell fractions, and in germ cell and Sertoli cell co-cultures. betaNGF was detected only in germ cells from pachytene spermatocytes of stages VII up to spermatids of stages IX-X. TrkA and p75(NTR) were detected in Sertoli cells and in these germ cells. Taken together, these results indicate that betaNGF should participate in an auto/paracrine pathway of regulation of the second meiotic division of rat spermatocytes in vivo.


Assuntos
Comunicação Autócrina , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meiose/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Comunicação Parácrina , Espermatócitos/metabolismo , Espermatogênese/efeitos dos fármacos , Animais , Comunicação Autócrina/efeitos dos fármacos , Carbazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Alcaloides Indólicos , Masculino , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/metabolismo , Células de Sertoli/efeitos dos fármacos , Espermatócitos/efeitos dos fármacos , Fatores de Tempo
14.
Mol Cell Proteomics ; 6(3): 451-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17146107

RESUMO

Peptide aptamers are combinatorial recognition molecules that consist of a constant scaffold protein displaying a doubly constrained variable peptide loop. They bind specifically target proteins and interfere with their function. We have built a peptide aptamer library in a lentiviral expression system to isolate aptamers that inhibit cell proliferation in vitro. Using one of the isolated aptamers (R5G42) as a bait protein, we have performed yeast two-hybrid screening of cDNA libraries and identified calcineurin A as a target protein candidate. R5G42 bound calcineurin A in vitro and stimulated its phosphatase activity. When expressed transiently in human cells, R5G42 induced the dephosphorylation of BAD. We have identified an antiproliferative peptide aptamer that binds calcineurin and stimulates its activity. The use of this ligand may help elucidate the still elusive structural mechanisms of activation and inhibition of calcineurin. Our work illustrates the power of phenotypic screening of combinatorial protein libraries to interrogate the proteome and chart molecular regulatory networks.


Assuntos
Aptâmeros de Peptídeos/farmacologia , Calcineurina/biossíntese , Proliferação de Células/efeitos dos fármacos , Animais , Aptâmeros de Peptídeos/genética , Linhagem Celular Tumoral , Vetores Genéticos , Humanos , Biblioteca de Peptídeos , Monoéster Fosfórico Hidrolases/metabolismo , Ratos , Vírus da Imunodeficiência Símia/genética , Técnicas do Sistema de Duplo-Híbrido , Regulação para Cima
15.
Mol Cell Biol ; 25(12): 5106-18, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15923627

RESUMO

Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. Furthermore, elevated Kalirin expression resulted in catalytic activation of TrkA, as demonstrated by in vitro kinase assays and increased NGF-stimulated cellular activation of Rac, Mek, and CREB. Domain mapping demonstrated that the N-terminal Kalirin pleckstrin homology domain mediates the interaction with TrkA. The effects of Kalirin on TrkA provide a molecular basis for the requirement of Kalirin in process extension from PC12 cells and for previously observed effects on axonal extension and dendritic maintenance. The interaction of TrkA with the pleckstrin homology domain of Kalirin may be one example of a general mechanism whereby receptor/Rho GEF pairings play an important role in receptor tyrosine kinase activation and signal transduction.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , MAP Quinase Quinase 1/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptor trkA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
16.
Biol Reprod ; 70(4): 1147-52, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14695906

RESUMO

In all systems examined so far, the G2/M phase transition is controlled by the M-phase promoting factor (MPF), a complex of cdc2 (CDK1) and cyclin B1. Histone H1 kinase activity and MPF components are present in pachytene spermatocytes (PS). However, it has not been demonstrated yet that direct inhibition of MPF activity prevents the G2/M transition in these cells. When roscovitine, a potent inhibitor of CDK1, CDK2, and CDK5 activities, was added to cocultures of PS with Sertoli cells, the number of both secondary spermatocytes and round spermatids formed were lower than in control cultures, despite similar cell viability. This effect of roscovitine was reversible, did not involve the Sertoli cells, and was dependent on the concentration of the inhibitor. Roscovitine did not modify the amount of MPF in these germ cells but inhibited the CDK1- or CDK2-associated histone H1 kinase activity of PS. Hence a functional relationship between cyclin-dependent kinase activity and the spontaneous processing of the first meiotic division and, for the first time, of the second meiotic division of male germ cells is shown.


Assuntos
Proteína Quinase CDC2/fisiologia , Quinases relacionadas a CDC2 e CDC28/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Espermatócitos/citologia , Espermatócitos/enzimologia , Animais , Proteína Quinase CDC2/metabolismo , Quinases relacionadas a CDC2 e CDC28/metabolismo , Tamanho Celular , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Quinase 2 Dependente de Ciclina , Quinase 5 Dependente de Ciclina , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Masculino , Fator Promotor de Maturação/metabolismo , Meiose/fisiologia , Concentração Osmolar , Inibidores de Proteínas Quinases , Proteínas Quinases/metabolismo , Purinas/administração & dosagem , Purinas/farmacologia , Ratos , Roscovitina , Células de Sertoli , Espermátides/citologia , Espermátides/fisiologia , Espermatócitos/fisiologia
17.
J Biol Chem ; 278(10): 8706-16, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12438306

RESUMO

A chimera of the nerve growth factor (NGF) receptor, TrkA, and green fluorescent protein (GFP) was engineered by expressing GFP in phase with the carboxyl terminus of TrkA. TrkA-GFP becomes phosphorylated on tyrosine residues in response to NGF and is capable of initiating signaling cascades leading to prolonged MAPK activation and differentiation in PC12 nnr5 cells. TrkA constructs, progressively truncated in the carboxyl-terminal domain, were prepared as GFP chimerae in order to identify which part of the receptor intracellular domain is involved in its trafficking. Immunofluorescence observations show that TrkA-GFP is found mainly in cell surface membrane ruffles and in endosomes. Biochemical analysis indicated that the cytoplasmic domain of TrkA is not necessary for correct maturation and cell surface translocation of the receptor. An antibody against the extracellular domain of TrkA (RTA) was used as ligand to stimulate internalization and phosphorylation of TrkA. Co-localization studies with anti-phosphorylated TrkA antibodies support a role for such complexes in the propagation of signaling from the cell surface, resulting in the activation of TrkA in areas of the endosome devoid of receptor-ligand complexes. Confocal time-lapse analysis reveals that the TrkA-GFP chimera shows highly dynamic trafficking between the cell surface and internal locations. TrkA-positive vesicles were estimated to move 0.46 +/- 0.09 microm/s anterograde and 0.48 +/- 0.07 microm/s retrograde. This approach and the fidelity of the biochemical properties of the TrkA-GFP demonstrate that real-time visualization of trafficking of tyrosine kinase receptors in the presence or absence of the ligand is feasible.


Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Neural/fisiologia , Receptor trkA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Sequência de Bases , Membrana Celular/metabolismo , Primers do DNA , Regulação para Baixo/fisiologia , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Fosforilação , Transporte Proteico , Ratos
18.
J Biol Chem ; 277(41): 38700-8, 2002 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-12055187

RESUMO

A growing body of evidence indicates a close relationship between tyrosine kinase receptor trafficking and signaling. Biochemical and molecular analyses of the expression, fate, and kinetics of membrane trafficking of the nerve growth factor (NGF) receptor TrkA were performed in PC12 cells. Pulse-chase experiments indicate that TrkA is synthesized as a 110-kDa N-glycosylated precursor that leads to the mature 140-kDa form of the receptor with a half-life of conversion of approximately 24 +/- 0.5 min. Neuraminidase digestion shows that modification of the carbohydrate moiety of the receptor by sialylation occurs during maturation. The 140-kDa form is rapidly translocated to the cell surface as assessed by cell surface biotinylation performed on intact PC12 cells. Mature receptor half-life is approximately 138 +/- 4 min and is shortened to 86 +/- 8 min by NGF treatment. Flow cytometric analysis indicates that NGF induces clearing of this receptor from the cell surface within minutes of treatment. The addition of NGF decreases the half-life of cell surface gp140(TrkA) from 100 to 35 min and leads to enhanced lysosomal degradation of the receptor. The process of NGF-induced TrkA internalization is clearly affected by interfering with ligand binding to p75(NTR). An analysis of receptor activation kinetics also shows that receptor signaling primarily takes place from an intracellular location. Together, these data show that the primary effect of NGF treatment is a p75(NTR)-modulated decrease in TrkA transit time at the cell surface.


Assuntos
Transporte Proteico/fisiologia , Receptor trkA/metabolismo , Cloreto de Amônio/metabolismo , Animais , Cloroquina/metabolismo , Endocitose/fisiologia , Imuno-Histoquímica , Lisossomos/metabolismo , Peso Molecular , Fator de Crescimento Neural/metabolismo , Neuraminidase/metabolismo , Células PC12 , Ratos , Receptor de Fator de Crescimento Neural , Receptor trkA/química , Receptor trkA/genética , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...