Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Prev Res (Phila) ; 17(1): 19-28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37913800

RESUMO

We sought to explore the intrafamilial communication and cascade genetic testing (CGT) experiences of patients with hereditary cancer from diverse, medically underserved populations and their relatives. Participants included patients receiving oncology care at an urban, safety net hospital in Texas or comprehensive cancer center in Alabama and their first-degree relatives. In-depth semi-structured qualitative interviews were completed wherein patients shared their experiences with genetic counseling (GC), genetic testing (GT), and communicating their results to relatives. Relatives shared their experiences receiving information from the patient and considering CGT. Interviews were transcribed, coded, and themes were identified. Of 25 participating patients, most recalled key aspects of GC and their GT results. Most (80%) patients shared their results with relatives, but only some relatives underwent CGT; patients reported low perceived susceptibility to hereditary cancer as a common barrier to CGT for their relatives. Of 16 participating relatives, most reported feeling distress upon learning the patient's GT results. Relatives were fearful of learning their own CGT results but identified prevention and early detection as CGT benefits. Interviews identified opportunities during family communication to improve relatives' perceived susceptibility to hereditary cancer. Tailored resources may support patients and relatives experiencing distress and fear during GT. PREVENTION RELEVANCE: This study of intrafamilial communication and cascade genetic testing experiences of patients with hereditary cancer and their relatives from diverse, medically underserved populations identified relatives' perceived susceptibility to hereditary cancer risks, distress, and fear as frequent reactions and barriers to testing. These results may inform future hereditary cancer prevention efforts.


Assuntos
Área Carente de Assistência Médica , Neoplasias , Humanos , Testes Genéticos , Comunicação , Aconselhamento Genético , Neoplasias/diagnóstico , Neoplasias/genética , Predisposição Genética para Doença
2.
HGG Adv ; 3(3): 100111, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35571680

RESUMO

CSNK2B encodes for casein kinase II subunit beta (CK2ß), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and ß-catenin with mutated CK2ß. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated ß-catenin and consequent absence of active ß-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear ß-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.

3.
Brain ; 145(12): 4232-4245, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35139179

RESUMO

RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.


Assuntos
Megalencefalia , Transtornos do Neurodesenvolvimento , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Megalencefalia/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios , Células NIH 3T3 , Transdução de Sinais/genética
4.
Genet Med ; 24(1): 179-191, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906456

RESUMO

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Anormalidades Musculoesqueléticas , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Anormalidades Musculoesqueléticas/genética , Fenótipo
5.
Genet Med ; 24(2): 255-261, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906464

RESUMO

Genomic testing, including single-nucleotide variation (formerly single-nucleotide polymorphism)-based chromosomal microarray and exome and genome sequencing, can detect long regions of homozygosity (ROH) within the genome. Genomic testing can also detect possible uniparental disomy (UPD). Platforms that can detect ROH and possible UPD have matured since the initial American College of Medical Genetics and Genomics (ACMG) standard was published in 2013, and the detection of ROH and UPD by these platforms has shown utility in diagnosis of patients with genetic/genomic disorders. The presence of these segments, when distributed across multiple chromosomes, may indicate a familial relationship between the proband's parents. This technical standard describes the detection of possible consanguinity and UPD by genomic testing, as well as the factors confounding the inference of a specific parental relationship or UPD. Current bioethical and legal issues regarding detection and reporting of consanguinity are also discussed.


Assuntos
Genética Médica , Dissomia Uniparental , Consanguinidade , Genômica , Homozigoto , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estados Unidos
6.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951726

RESUMO

The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro-B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro- to pre-B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1's critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.


Assuntos
Agamaglobulinemia/genética , Cromatina/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Adolescente , Adulto , Linfócitos B/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Criança , Pré-Escolar , Células Dendríticas/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lactente , Linfopoese/genética , Masculino , Mutação/genética , Células Precursoras de Linfócitos B/fisiologia , Células-Tronco/fisiologia , Adulto Jovem
7.
Am J Med Genet A ; 176(12): 2791-2797, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216695

RESUMO

Phelan-McDermid syndrome (PMS, OMIM 606232) is a heterozygous contiguous gene microdeletion syndrome occurring at the distal region of chromosome 22q13. This deletion encompasses the SHANK3 gene at 22q13.33, which is thought to be the critical gene for the neurodevelopmental features seen in this syndrome. PMS is typically characterized by intellectual disability, autism spectrum disorder, absent to severely delayed speech, neonatal hypotonia, and dysmorphic features. Two patients presenting with classic clinical features of PMS have been reported to have interstitial microdeletions in the 22q13.2 region that map proximal to the SHANK3 gene (0.54 and 0.72 Mb, respectively). Here, we describe a 13-month-old girl with a de novo 1.16 Mb interstitial deletion in the 22q13.2 region who presented with global developmental delay, subtle dysmorphic features, and immunodeficiency. This deletion overlaps with the two previously published cases and five cases from the DECIPHER database. All eight patients share features common to patients with PMS including developmental delay and language delay, which suggests that this represents a previously unrecognized microdeletion syndrome in the 22q13.2 region. Our patient's deletion encompasses the TCF20 and TNFRSF13C genes, which are thought to play causative roles in the patient's neurodevelopmental and immunological features, respectively.


Assuntos
Receptor do Fator Ativador de Células B/genética , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Fenótipo , Fatores de Transcrição/genética , Alelos , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Hibridização Genômica Comparativa , Análise Citogenética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...