Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732053

RESUMO

Concussion, caused by a rotational acceleration/deceleration injury mild enough to avoid structural brain damage, is insufficiently captured in recent preclinical models, hampering the relation of pathophysiological findings on the cellular level to functional and behavioral deficits. We here describe a novel model of unrestrained, single vs. repetitive concussive brain injury (CBI) in male C56Bl/6j mice. Longitudinal behavioral assessments were conducted for up to seven days afterward, alongside the evaluation of structural cerebral integrity by in vivo magnetic resonance imaging (MRI, 9.4 T), and validated ex vivo by histology. Blood-brain barrier (BBB) integrity was analyzed by means of fluorescent dextran- as well as immunoglobulin G (IgG) extravasation, and neuroinflammatory processes were characterized both in vivo by positron emission tomography (PET) using [18F]DPA-714 and ex vivo using immunohistochemistry. While a single CBI resulted in a defined, subacute neuropsychiatric phenotype, longitudinal cognitive testing revealed a marked decrease in spatial cognition, most pronounced in mice subjected to CBI at high frequency (every 48 h). Functional deficits were correlated to a parallel disruption of the BBB, (R2 = 0.29, p < 0.01), even detectable by a significant increase in hippocampal uptake of [18F]DPA-714, which was not due to activation of microglia, as confirmed immunohistochemically. Featuring a mild but widespread disruption of the BBB without evidence of macroscopic damage, this model induces a characteristic neuro-psychiatric phenotype that correlates to the degree of BBB disruption. Based on these findings, the BBB may function as both a biomarker of CBI severity and as a potential treatment target to improve recovery from concussion.


Assuntos
Barreira Hematoencefálica , Concussão Encefálica , Modelos Animais de Doenças , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos , Concussão Encefálica/metabolismo , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Traumatismos Cranianos Fechados/patologia , Traumatismos Cranianos Fechados/metabolismo , Traumatismos Cranianos Fechados/fisiopatologia , Traumatismos Cranianos Fechados/diagnóstico por imagem
2.
Stroke ; 54(8): 2145-2155, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37377015

RESUMO

BACKGROUND: Beyond focal effects, stroke lesions impact the function of distributed networks. We here investigated (1) whether transcranial direct current stimulation (tDCS) alters the network changes induced by cerebral ischemia and (2) whether functional network parameters predict the therapeutic efficacy of tDCS in a mouse model of focal photothrombotic stroke. METHODS: Starting 3 days after stroke, cathodal tDCS (charge density=39.6 kC/m²) was applied over 10 days in male C57Bl/6J mice under light anesthesia over the lesioned sensory-motor cortex. Functional connectivity (resting-state functional magnetic resonance imaging) was evaluated for up to 28-day poststroke, with global graph parameters of network integration computed. RESULTS: Ischemia induced a subacute increase in connectivity accompanied by a significant reduction in characteristic path length, reversed by 10 days of tDCS. Early measures of functional network alterations and the network configuration at prestroke baseline predicted spontaneous and tDCS-augmented motor recovery. DISCUSSION: Stroke induces characteristic network changes throughout the brain that can be detected by resting-state functional magnetic resonance imaging. These network changes were, at least in part, reversed by tDCS. Moreover, early markers of a network impairment and the network configuration before the insult improve the prediction of motor recovery.


Assuntos
Isquemia Encefálica , Córtex Sensório-Motor , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Masculino , Camundongos , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Imageamento por Ressonância Magnética , Isquemia Encefálica/complicações
3.
Mult Scler ; 28(6): 865-871, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34449299

RESUMO

OBJECTIVE: To investigate the time to diagnosis in multiple sclerosis (MS) in Germany. METHODS: Analysis of real-world registry data from the German Multiple Sclerosis Registry (GMSR) and performing a primary analysis in patients where month-specific registration of the dates of onset and diagnosis was available. RESULTS: As of January 2020, data of a total of 28,658 patients with MS were extracted from the GMSR, with 9836 patients included in the primary analysis. The mean time to diagnosis was shorter following the introduction of the first magnetic resonance imaging (MRI)-based McDonald criteria in 2001. This effect was most pronounced in younger adults below the age of 40 years with relapsing onset multiple sclerosis (ROMS), with a decrease from 1.9 years in 2010 to 0.9 years in 2020, while unchanged in patients aged 40-50 years (1.4 years in 2010 and 1.3 years in 2020). In the limited number of paediatric onset MS patients, the time to diagnosis was longer and did not change (2.9 years). CONCLUSION: The current sensitive MRI-based diagnostic criteria have likely contributed to an earlier diagnosis of MS in Germany in younger adults aged 18-39 years with ROMS. Whether this translated to earlier initiation of disease-modifying treatment or had a beneficial effect on patient outcomes remains to be demonstrated.


Assuntos
Esclerose Múltipla , Adulto , Criança , Diagnóstico Precoce , Alemanha/epidemiologia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/epidemiologia , Sistema de Registros
4.
Front Cell Neurosci ; 15: 706585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630042

RESUMO

The neural stem cell (NSC) niche is a highly vascularized microenvironment that supplies stem cells with relevant biological and chemical cues. However, the NSCs' proximity to the vasculature also means that the NSCs are subjected to permanent tissue deformation effected by the vessels' heartbeat-induced pulsatile movements. Cultivating NSCs under common culture conditions neglects the-yet unknown-influence of this cyclic mechanical strain on neural stem cells. Under the hypothesis that pulsatile strain should affect essential NSC functions, a cyclic uniaxial strain was applied under biomimetic conditions using an in-house developed stretching system based on cross-linked polydimethylsiloxane (PDMS) elastomer. While lineage commitment remained unaffected by cyclic deformation, strain affected NSC quiescence and cytoskeletal organization. Unexpectedly, cyclically stretched stem cells aligned in stretch direction, a phenomenon unknown for other types of cells in the mammalian organism. The same effect was observed for young astrocytes differentiating from NSCs. In contrast, young neurons differentiating from NSCs did not show mechanoresponsiveness. The exceptional orientation of NSCs and young astrocytes in the stretch direction was blocked upon RhoA activation and went along with a lack of stress fibers. Compared to postnatal astrocytes and mature neurons, NSCs and their young progeny displayed characteristic and distinct mechanoresponsiveness. Data suggest a protective role of young astrocytes in mixed cultures of differentiating neurons and astrocytes by mitigating the mechanical stress of pulsatile strain on developing neurons.

5.
Stroke ; 52(9): 2948-2960, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34281374

RESUMO

Background and Purpose: The translational roadblock has long impeded the implementation of experimental therapeutic approaches for stroke into clinical routine. Considerable interspecies differences, for example, in brain anatomy and function, render comparisons between rodents and humans tricky, especially concerning brain reorganization and recovery of function. We tested whether stroke-evoked changes in neural networks follow similar patterns in mice and patients using a systems-level perspective. Methods: We acquired resting-state functional magnetic resonance imaging data during the early poststroke phase in a sample of human patients and compared the observed network changes with data from 2 mouse stroke models, that is, photothrombosis and distal middle cerebral artery occlusion. Importantly, data were subjected to the same processing steps, allowing a direct comparison of global network changes using graph theory. Results: We found that network parameters computed for both mouse models of stroke and humans follow a similar pattern in the postacute stroke phase. Parameters indicating the global communication structure's facilitation, such as small worldness and characteristic path length, were similarly changed in humans and mice in the first days after stroke. Additionally, small worldness correlated with concurrent motor impairment in humans. Longitudinal observation in the subacute phase revealed a negative correlation between initial small worldness and motor recovery in mice. Conclusions: We show that network measures based on resting-state functional magnetic resonance imaging data after stroke obtained in mice and humans share notable features. The observed network alterations could serve as therapeutic readout parameters for future translational studies in stroke research.


Assuntos
Encéfalo/patologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Acidente Vascular Cerebral/diagnóstico
6.
Front Aging Neurosci ; 13: 623751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584250

RESUMO

The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.

7.
Front Cell Neurosci ; 14: 590500, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250714

RESUMO

Microglia-the brain's primary immune cells-exert a tightly regulated cascade of pro- and anti-inflammatory effects upon brain pathology, either promoting regeneration or neurodegeneration. Therefore, harnessing microglia emerges as a potential therapeutic concept in neurological research. Recent studies suggest that-besides being affected by chemokines and cytokines-various cell entities in the brain relevantly respond to the mechanical properties of their microenvironment. For example, we lately reported considerable effects of elasticity on neural stem cells, regarding quiescence and differentiation potential. However, the effects of elasticity on microglia remain to be explored.Under the hypothesis that the elasticity of the microenvironment affects key characteristics and functions of microglia, we established an in vitro model of primary rat microglia grown in a polydimethylsiloxane (PDMS) elastomer-based cell culture system. This way, we simulated the brain's physiological elasticity range and compared it to supraphysiological stiffer PDMS controls. We assessed functional parameters of microglia under "resting" conditions, as well as when polarized towards a pro-inflammatory phenotype (M1) by lipopolysaccharide (LPS), or an anti-inflammatory phenotype (M2) by interleukin-4 (IL-4). Microglia viability was unimpaired on soft substrates, but we found various significant effects with a more than two-fold increase in microglia proliferation on soft substrate elasticities mimicking the brain (relative to PDMS controls). Furthermore, soft substrates promoted the expression of the activation marker vimentin in microglia. Moreover, the M2-marker CD206 was upregulated in parallel to an increase in the secretion of Insulin-Like Growth Factor-1 (IGF-1). The upregulation of CD206 was abolished by blockage of stretch-dependent chloride channels. Our data suggest that the cultivation of microglia on substrates of brain-like elasticity promotes a basic anti-inflammatory activation state via stretch-dependent chloride channels. The results highlight the significance of the omnipresent but mostly overlooked mechanobiological effects exerted on microglia and contribute to a better understanding of the complex spatial and temporal interactions between microglia, neural stem cells, and glia, in health and disease.

8.
Langmuir ; 35(23): 7423-7431, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30110535

RESUMO

Neuronal mechanobiology plays a vital function in brain development and homeostasis with an essential role in neuronal maturation, pathfinding, and differentiation but is also crucial for understanding brain pathology. In this study, we constructed an in vitro system to assess neuronal responses to cyclic strain as a mechanical signal. The selected strain amplitudes mimicked physiological as well as pathological conditions. By subjecting embryonic neuronal cells to cyclic uniaxial strain we could steer the direction of neuronal outgrowth perpendicular to strain direction for all applied amplitudes. A long-term analysis proved maintained growth direction. Moreover, stretched neurons showed an enhanced length, growth, and formation of nascent side branches with most elevated growth rates subsequent to physiological straining. Application of cyclic strain to already formed neurites identified retraction bulbs with destabilized microtubule structures as spontaneous responses. Importantly, neurons were able to adapt to the mechanical signals without induction of cell death and showed a triggered growth behavior when compared to unstretched neurons. The data suggest that cyclic strain plays a critical role in neuronal development.


Assuntos
Encéfalo/citologia , Fenômenos Mecânicos , Neurônios/citologia , Animais , Apoptose , Fenômenos Biomecânicos , Sobrevivência Celular , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Gravidez , Ratos , Ratos Wistar , Estresse Mecânico , Tubulina (Proteína)/metabolismo
9.
Restor Neurol Neurosci ; 35(1): 87-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28059802

RESUMO

The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient's outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms.This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations.


Assuntos
Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/terapia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia , Pesquisa Translacional Biomédica , Animais , Humanos
11.
Neuroimage ; 128: 54-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747749

RESUMO

Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Inflamação/metabolismo , Animais , Encéfalo/patologia , Processamento de Imagem Assistida por Computador , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar
12.
Brain Res ; 1581: 80-8, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24905627

RESUMO

Neuroinflammation with microglia activation (MA) constitutes a key tissue response in acute stroke. Until now, its course in the chronic stage is less well defined. Here, we investigated (i) neuroinflammation in the chronic stage of a rat model of embolic stroke (n=6), and (ii) whether this process can be visualized in vivo by multimodal imaging using Magnetic Resonance Imaging (MRI) and Positron-Emission-Tomography (PET). Imaging data were verified using histology and immunohistochemistry. Repetitive PET studies until week 6 after stroke reveal poststroke inflammation as a dynamic process that involved the infarct, the surrounding tissue and secondary degenerating areas in a complex fashion. At the end, 7 months after stroke, neuroinflammation had almost completely vanished at the lesion side. In contrast, remote from the primarily infarcted areas, a marked T2(*)- hypointensity was detected in the ipsilateral thalamus. In the corresponding area, [(11)C]PK11195-PET detected microglia activation. Immunohistochemistry confirmed activated microglia in the ipsilateral thalamus with signs of extensive phagocytosis and iron deposition around plaque-like amyloid deposition. Neuronal staining (NeuN) revealed pronounced neuronal loss as an endpoint of neurodegeneration in these areas. In conclusion, the data demonstrate not only ongoing thalamic neuroinflammation but also marked neurodegeneration remote from the lesion site in the chronic phase after stroke in rats. Both, neuroinflammation and neurodegeneration were accessible to (immuno-) histochemical methods as well as to in vivo methods using [(11)C]PK11195-PET and T2(*)-weighted MRI. Although the functional roles of these dynamic processes remain to be elucidated, ongoing destruction of neuronal tissue is conceivable. Its inhibition using anti-inflammatory substances may be beneficial in chronic post-stroke conditions, while multimodal imaging can be used to evaluate putative therapeutic effects in vivo.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Amiloide/metabolismo , Animais , Encéfalo/fisiopatologia , Radioisótopos de Carbono , Doença Crônica , Modelos Animais de Doenças , Imuno-Histoquímica , Ferro/metabolismo , Isoquinolinas , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Microglia/patologia , Microglia/fisiologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Neuroimunomodulação/fisiologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos Wistar , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia
13.
Neuropathology ; 33(1): 30-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22640018

RESUMO

Focal cerebral ischemia induces cellular responses that may result in secondary tissue damage. We recently demonstrated multi-facetted spatial and temporal patterns of neuroinflammation by multimodal imaging. In the present study, we especially focus on the separation of vital and necrotic tissue, which enabled us to define a demarcation zone. Focal cerebral ischemia was induced via macrosphere embolization of the middle cerebral artery in Wistar rats. Subsequent cellular processes were investigated immunohistochemically from 3 to 56 days after onset of ischemia. We detected several infarct subareas: a necrotic infarct core and its margin adjacent to a nerve/glial antigen 2 (NG2)+ zone delineating it from a vital peri-infarct zone. Initially transition from necrotic to vital tissue was gradual; later on necrosis was precisely separated from vital tissue by a narrow NG2+ belt that was devoid of astrocytes, oligodendrocytes or neurons. Within this demarcation zone NG2+ cells associate with ionized calcium binding adaptor molecule 1 (Iba1) but not with GFAP, neuronal nuclear antigen (NeuN) or 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). During further infarct maturation NG2 seemed to be positioned in the extracellular matrix (ECM) of the demarcation zone, whereas Iba1+ cells invaded the necrotic infarct core and GFAP+ cells built a gliotic containing belt between the lesion and NeuN+ unaffected tissue. Overall, our data suggested that NG2 proteoglycan expression and secretion hallmarked demarcation as a process that actively separated necrosis from vital tissue and therefore decisively impacts secondary neurodegeneration after ischemic stroke.


Assuntos
Antígenos/metabolismo , Infarto Encefálico/metabolismo , Encéfalo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Proteoglicanas/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Antígenos Nucleares/metabolismo , Encéfalo/patologia , Infarto Encefálico/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Necrose , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/patologia , Neurônios/patologia , Ratos , Ratos Wistar
14.
Stroke ; 43(1): 193-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22033990

RESUMO

BACKGROUND AND PURPOSE: Experimental stroke models are essential to study in vivo pathophysiological processes of focal cerebral ischemia. In this study, an embolic stroke model in rats was applied (1) to characterize early development of regional cerebral blood flow and metabolism with positron emission tomography (PET) using [(15)O]H(2)O and [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG); and (2) to identify potential parameters for predicting tissue fate. METHODS: Remote occlusion of the middle cerebral artery was induced in 10 Wistar rats by injection of 4 TiO(2) macrospheres. Sequential [(15)O]H(2)O-PET (baseline, 5, 30, 60 minutes after middle cerebral artery occlusion) and FDG-PET measurements (75 minutes after middle cerebral artery occlusion) were performed. [(15)O]H(2)O-PET data and FDG kinetic parameters were compared with MRIs and histology at 24 hours. RESULTS: Regional cerebral blood flow decreased substantially within 30 minutes after middle cerebral artery occlusion (41% to 58% of baseline regional cerebral blood flow; P<0.001) with no relevant changes between 30 and 60 minutes. At 60 minutes, regional cerebral blood flow correlated well with the unidirectional transport parameter K1 of FDG in all animals (r=0.86±0.09; P<0.001). Tissue fate could be accurately predicted taking into account K1 and net influx rate constant Ki of FDG. The infarct volume predicted by FDG-PET (375.8±102.3 mm(3)) correlated significantly with the infarct size determined by MRI after 24 hours (360.8±93.7 mm(3); r=0.85). CONCLUSIONS: Hypoperfused tissue can be identified by decreased K1 of FDG. Acute ischemic tissue can be well characterized using K1 and Ki allowing for discrimination between infarct core and early viable tissue. Because FDG-PET is widely spread, our findings can be easily translated into clinical application for early diagnoses of ischemia.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar
15.
Mol Imaging Biol ; 13(3): 547-557, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20563754

RESUMO

The purpose of this study was to investigate the potential of 3'-deoxy-3'-[¹8F]fluorothymidine ([¹8F]FLT) positron emission tomography (PET) to detect early treatment responses in gliomas. Human glioma cells were stably transduced with genes yielding therapeutic activity, sorted for different levels of exogenous gene expression, and implanted subcutaneously into nude mice. Multimodality imaging during prodrug therapy included (a) magnetic resonance imaging, (b) PET with 9-(4-[¹8F]fluoro-3-hydroxymethylbutyl)guanine assessing exogenous gene expression, and (c) repeat [¹8F]FLT PET assessing antiproliferative therapeutic response. All stably transduced gliomas responded to therapy with significant reduction in tumor volume and [¹8F]FLT accumulation within 3 days after initiation of therapy. The change in [¹8F]FLT uptake before and after treatment correlated to volumetrically calculated growth rates. Therapeutic efficacy as monitored by [¹8F]FLT PET correlated to levels of therapeutic gene expression measured in vivo. Thus, [¹8F]FLT PET assesses early antiproliferative effects, making it a promising radiotracer for the development of novel treatments for glioma.


Assuntos
Didesoxinucleosídeos , Terapia Genética , Glioma/diagnóstico por imagem , Glioma/terapia , Tomografia por Emissão de Pósitrons , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Proliferação de Células , Expressão Gênica , Glioma/patologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Fatores de Tempo , Resultado do Tratamento
16.
Exp Transl Stroke Med ; 2(1): 22, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21171972

RESUMO

BACKGROUND: Neuroinflammation evolves as a multi-facetted response to focal cerebral ischemia. It involves activation of resident glia cell populations, recruitment of blood-derived leucocytes as well as humoral responses. Among these processes, phagocyte accumulation has been suggested to be a surrogate marker of neuroinflammation. We previously assessed phagocyte accumulation in human stroke by MRI. We hypothesize that phagocyte accumulation in the macrosphere model may resemble the temporal and spatial patterns observed in human stroke. METHODS: In a rat model of permanent focal ischemia by embolisation of TiO2-spheres we assessed key features of post-ischemic neuroinflammation by the means of histology, immunocytochemistry of glial activation and influx of hematogeneous cells, and quantitative PCR of TNF-α, IL-1, IL-18, and iNOS mRNA. RESULTS: In the boundary zone of the infarct, a transition of ramified microglia into ameboid phagocytic microglia was accompanied by an up-regulation of MHC class II on the cells after 3 days. By day 7, a hypercellular infiltrate consisting of activated microglia and phagocytic cells formed a thick rim around the ischemic infarct core. Interestingly, in the ischemic core microglia could only be observed at day 7. TNF-α was induced rapidly within hours, IL-1ß and iNOS peaked within days, and IL-18 later at around 1 week after ischemia. CONCLUSIONS: The macrosphere model closely resembles the characteristical dynamics of postischemic inflammation previously observed in human stroke. We therefore suggest that the macrosphere model is highly appropriate for studying the pathophysiology of stroke in a translational approach from rodent to human.

17.
PLoS One ; 5(2): e9414, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195471

RESUMO

BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS) is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC) found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4) and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2). These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.


Assuntos
Indutores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Neurônios/citologia , Células-Tronco/citologia , Adulto , Células-Tronco Adultas/citologia , Angiopoietina-2/farmacologia , Animais , Encéfalo/citologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Haplorrinos , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/farmacologia , Camundongos , Ratos , Proteínas Repressoras , Fatores de Transcrição/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(32): 13570-5, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19628689

RESUMO

In Parkinson's disease, multiple cell types in many brain regions are afflicted. As a consequence, a therapeutic strategy that activates a general neuroprotective response may be valuable. We have previously shown that Notch ligands support neural precursor cells in vitro and in vivo. Here we show that neural precursors express the angiopoietin receptor Tie2 and that injections of angiopoietin2 activate precursors in the adult brain. Signaling downstream of Tie2 and the Notch receptor regulate blood vessel formation. In the adult brain, angiopoietin2 and the Notch ligand Dll4 activate neural precursors with opposing effects on the density of blood vessels. A model of Parkinson's disease was used to show that angiopoietin2 and Dll4 rescue injured dopamine neurons with motor behavioral improvement. A combination of growth factors with little impact on the vasculature retains the ability to stimulate neural precursors and protect dopamine neurons. The cellular and pharmacological basis of the neuroprotective effects achieved by these single treatments merits further analysis.


Assuntos
Encéfalo/patologia , Dopamina/metabolismo , Neurônios/patologia , Células-Tronco/citologia , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor TIE-2/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
19.
Handb Exp Pharmacol ; (185 Pt 2): 341-59, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18626610

RESUMO

Gene therapy of patients with glioblastoma using viral and non-viral vectors, which are applied by direct injection or convection-enhanced delivery (CED), appear to be satisfactorily safe. Up to date, only single patients show a significant therapeutic benefit as deduced from single long-term survivors. Non-invasive imaging by PET for the identification of viable target tissue and for assessment of transduction efficiency shall help to identify patients which might benefit from gene therapy, while non-invasive follow-up on treatment responses allows early and dynamic adaptations of treatment options. Therefore, molecular imaging has a critical impact on the development of standardised gene therapy protocols and on efficient and safe vector applications in humans.


Assuntos
Neoplasias Encefálicas/terapia , Diagnóstico por Imagem , Terapia Genética , Glioma/terapia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Diagnóstico por Imagem/métodos , Regulação Neoplásica da Expressão Gênica , Marcação de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Glioma/genética , Glioma/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Resultado do Tratamento
20.
PLoS One ; 2(6): e528, 2007 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-17565381

RESUMO

Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Terapia Genética , Glioma/genética , Glioma/terapia , Luminescência , Animais , Western Blotting , Neoplasias Encefálicas/metabolismo , Vetores Genéticos , Glioma/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 1/genética , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timidina Quinase/genética , Timidina Quinase/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...