Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723332

RESUMO

Despite numerous interventions, the ectoparasitic mite Varroa (Varroa destructor Anderson and Trueman [Mesostigmata: Varroidae]) and the pathogens it vectors remain a primary threat to honey bee (Apis mellifera Linnaeus [Hymenoptera: Apidae]) health. Hygienic behavior, the ability to detect, uncap, and remove unhealthy brood from the colony, has been bred for selectively for over two decades and continues to be a promising avenue for improved Varroa management. Although hygienic behavior is expressed more in Varroa-resistant colonies, hygiene does not always confer resistance to Varroa. Additionally, existing Varroa resistance selection methods trade efficacy for efficiency, because those achieving the highest levels of Varroa resistance can be time-consuming, and thus expensive and impractical for apicultural use. Here, we tested the hypothesis that hygienic response to a mixture of semiochemicals associated with Varroa-infested honey bee brood can serve as an improved tool for predicting colony-level Varroa resistance. In support of our hypothesis, we demonstrated that a mixture of the compounds (Z)-10-tritriacontene, (Z)-8-hentriacontene, (Z)-8-heptadecene, and (Z)-6-pentadecene triggers hygienic behavior in a two-hour assay, and that high-performing colonies (hygienic response to ≥60% of treated cells) have significantly lower Varroa infestations, remove significantly more introduced Varroa, and are significantly more likely to survive the winter compared to low-performing colonies (hygienic response to <60% of treated cells). We discuss the relative efficacy and efficiency of this assay for facilitating apiary management decisions and selection of Varroa-resistant honey bees, as well as the relevance of these findings to honey bee health, pollination services, and social insect communication.


Assuntos
Abelhas , Feromônios , Varroidae , Animais , Criação de Abelhas , Abelhas/química , Abelhas/parasitologia
2.
Sci Rep ; 9(1): 8753, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217481

RESUMO

The health of the honey bee Apis mellifera is challenged by the ectoparasitic mite Varroa destructor, and the numerous harmful pathogens it vectors. Existing pesticide-based Varroa controls are not sustainable. In contrast, one promising approach for improved honey bee health is the breeding of hygienic bees, capable of detecting and removing brood that is parasitized or diseased. In three experiments we find evidence to support the hypothesis that stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. By collecting, analyzing, and running bioassays involving mite-infested and control brood extracts from three honey bee breeding stocks we: 1) found evidence that a transferrable chemical signal for hygienic behavior is present in Varroa-infested brood extracts, 2) identified ten stock-specific hydrocarbons as candidates of hygienic signaling, and 3) found that two of these hydrocarbons linked to Varroa and DWV were also elevated in brood targeted for hygienic behavior. These findings expand our understanding of honey bee chemical communication, and facilitate the development of improved hygienic selection tools to breed honey bees with greater resistance to Varroa and associated pathogens.


Assuntos
Comunicação Animal , Abelhas , Asseio Animal , Hidrocarbonetos/metabolismo , Vírus de RNA , Varroidae , Animais , Abelhas/parasitologia , Abelhas/virologia
3.
J Evol Biol ; 28(12): 2349-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26348543

RESUMO

The central trade-off between reproduction and longevity dominates most species' life history. However, no mortality cost of reproduction is apparent in eusocial species, particularly social insects in the order Hymenoptera: one or a few individuals (typically referred to as queens) in a group specialize on reproduction and are generally longer lived than all other group members (typically referred to as workers), despite having the same genome. However, it is unclear whether this survival advantage is due to social facilitation by the group or an intrinsic, individual property. Furthermore, it is unknown whether the correlation between reproduction and longevity is due to a direct mechanistic link or an indirect consequence of the social role of the reproductives. To begin addressing these questions, we performed a comparison of queen and worker longevity in the ant Cardiocondyla obscurior under social isolation conditions. Survival of single queens and workers was compared under laboratory conditions, monitoring and controlling for brood production. Our results indicate that there is no intrinsic survival advantage of queens relative to workers unless individuals are becoming reproductively active. This interactive effect of caste and reproduction on life expectancy outside of the normal social context suggests that the positive correlation between reproduction and longevity in social insect queens is due to a direct link that can activate intrinsic survival mechanisms to ensure queen longevity.


Assuntos
Himenópteros/fisiologia , Animais , Feminino , Reprodução
4.
Insectes Soc ; 62(1): 37-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25667562

RESUMO

The repeated evolution of extreme polyandry in advanced social insects is exceptional and its explanation has attracted significant attention. However, most reported estimates of the number of matings are derived from limited sampling. Temporal and geographic variation in mating behavior of social insects has not been sufficiently studied. Worker offspring of 18 Eastern Honey Bee (Apis cerana Fabr.) queens from three populations across Thailand were genotyped at five microsatellite markers to test for population differences of mating behavior across three different ecosystems. The number of matings decreased from a northern, more seasonal environment to a southern tropical population and was lowest in a tropical island population. Our study confirms earlier findings that social insect mating behavior shows biogeographic variation and highlights that data from several populations are needed for reliable species-specific estimates of the number of matings. Detailed studies of populations that show significant differentiation in the number of matings may be able to discriminate effectively among the different hypotheses that have been proposed to explain the evolution of polyandry in honey bees and other advanced social insects.

5.
Bull Math Biol ; 73(3): 626-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20467824

RESUMO

Queens of the honey bee, Apis mellifera (L.), exhibit extreme polyandry, mating with up to 45 different males (drones). This increases the genetic diversity of their colonies, and consequently their fitness. After copulation, drones leave a mating sign in the genital opening of the queen which has been shown to promote additional mating of the queen. On one hand, this signing behavior is beneficial for the drone because it increases the genetic diversity of the resulting colony that is to perpetuate his genes. On the other hand, it decreases the proportion of the drone's personal offspring among colony members which is reducing drone fitness. We analyze the adaptiveness and evolutionary stability of this drone's behavior with a game-theoretical model. We find that theoretically both the strategy of leaving a mating sign and the strategy of not leaving a mating sign can be evolutionary stable, depending on natural parameters. However, the signing strategy is not favored for most scenarios, including the cases that are biologically plausible in reference to empirical data. We conclude that leaving a sign is not in the interest of the drone unless it serves biological functions other than increasing subsequent queen mating chances. Nevertheless, our analysis can also explain the prevalence of such a behavior of honey bee drones by a very low evolutionary pressure for an invasion of the nonsigning strategy.


Assuntos
Abelhas/genética , Teoria dos Jogos , Variação Genética , Modelos Genéticos , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino
6.
Heredity (Edinb) ; 106(5): 894-903, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21048673

RESUMO

The molecular basis of complex traits is increasingly understood but a remaining challenge is to identify their co-regulation and inter-dependence. Pollen hoarding (pln) in honeybees is a complex trait associated with a well-characterized suite of linked behavioral and physiological traits. In European honeybee stocks bidirectionally selected for pln, worker (sterile helper) ovary size is pleiotropically affected by quantitative trait loci that were initially identified for their effect on foraging behavior. To gain a better understanding of the genetic architecture of worker ovary size in this model system, we analyzed a series of crosses between the selected strains. The crossing results were heterogeneous and suggested non-additive effects. Three significant and three suggestive quantitative trait loci of relatively large effect sizes were found in two reciprocal backcrosses. These loci are not located in genome regions of known effects on foraging behavior but contain several interesting candidate genes that may specifically affect worker-ovary size. Thus, the genetic architecture of this life history syndrome may be comprised of pleiotropic, central regulators that influence several linked traits and other genetic factors that may be downstream and trait specific.


Assuntos
Abelhas/genética , Comportamento Animal/fisiologia , Pleiotropia Genética/genética , Ovário/anatomia & histologia , Polinização/fisiologia , Animais , Cruzamentos Genéticos , Europa (Continente) , Feminino , Tamanho do Órgão/genética , Locos de Características Quantitativas
7.
J Evol Biol ; 23(7): 1538-46, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20500363

RESUMO

Social insect colonies represent distinct units of selection. Most individuals evolve by kin selection and forgo individual reproduction. Instead, they display altruistic food sharing, nest maintenance and self-sacrificial colony defence. Recently, altruistic self-removal of diseased worker ants from their colony was described as another important kin-selected behaviour. Here, we report corroborating experimental evidence from honey bee foragers and theoretical analyses. We challenged honey bee foragers with prolonged CO(2) narcosis or by feeding with the cytostatic drug hydroxyurea. Both treatments resulted in increased mortality but also caused the surviving foragers to abandon their social function and remove themselves from their colony, resulting in altruistic suicide. A simple model suggests that altruistic self-removal by sick social insect workers to prevent disease transmission is expected under most biologically plausible conditions. The combined theoretical and empirical support for altruistic self-removal suggests that it may be another important kin-selected behaviour and a potentially widespread mechanism of social immunity.


Assuntos
Altruísmo , Abelhas/fisiologia , Comportamento de Nidação/fisiologia , Seleção Genética/fisiologia , Análise de Variância , Animais , Abelhas/efeitos dos fármacos , Dióxido de Carbono , Hidroxiureia/toxicidade , Modelos Biológicos , Comportamento de Nidação/efeitos dos fármacos
8.
J Evol Biol ; 19(5): 1475-85, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16910978

RESUMO

Honeybees are known to have genetically diverse colonies because queens mate with many males and the recombination rate is extremely high. Genetic diversity among social insect workers has been hypothesized to improve general performance of large and complex colonies, but this idea has not been tested in other social insects. Here, we present a linkage map and an estimate of the recombination rate for Acromyrmex echinatior, a leaf-cutting ant that resembles the honeybee in having multiple mating of queens and colonies of approximately the same size. A map of 145 AFLP markers in 22 linkage groups yielded a total recombinational size of 2076 cM and an inferred recombination rate of 161 kb cM(-1) (or 6.2 cM Mb(-1)). This estimate is lower than in the honeybee but, as far as the mapping criteria can be compared, higher than in any other insect mapped so far. Earlier studies on A. echinatior have demonstrated that variation in division of labour and pathogen resistance has a genetic component and that genotypic diversity among workers may thus give colonies of this leaf-cutting ant a functional advantage. The present result is therefore consistent with the hypothesis that complex social life can select for an increased recombination rate through effects on genotypic diversity and colony performance.


Assuntos
Formigas/genética , Variação Genética , Recombinação Genética , Animais , Mapeamento Cromossômico , Frequência do Gene , Ligação Genética , Genótipo
9.
Insectes Soc ; 52(3): 282-290, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18521192

RESUMO

Ant colony mortality has not been sufficiently studied, even though it is crucial for understanding social insect population biology and can serve as an important model for general aging and mortality processes. Particularly, studies on proximate mechanisms on mortality and stress resistance of ant colonies are lacking. This study explores the long-term colony starvation resistance of the small myrmecine ant Temnothorax rugatulus. We report extraordinary starvation resistance in the 21 colonies investigated, as most survived the eight months of total starvation. Furthermore, we studied demographic and behavioral changes over the experimental period. Brood decline began first (after two months) and mortality was highest, worker decline was intermediate, and queen mortality started latest and remained lowest. We found brood (its relative change during the first four months and the level of brood relative to colony size) to be the only significant predictor of colony starvation resistance, but not the degree of polygyny. As expected, rates of trophallaxis increased during the starvation period while colony activity bouts occurred more frequently but were much shorter, leading to an overall decrease in activity levels. This study is the first to comprehensively study mechanisms of starvation resistance in ant colonies, linking demography and behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...