Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Sci Rep ; 14(1): 11341, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762574

RESUMO

The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham (p = 0.039) and cathodal net-tDCS (p = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation (p = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.


Assuntos
Estudos de Viabilidade , Hipotálamo , Obesidade , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Hipotálamo/fisiologia , Masculino , Adulto , Feminino , Obesidade/terapia , Obesidade/fisiopatologia , Estudos Cross-Over , Apetite/fisiologia , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Regulação do Apetite/fisiologia , Tempo de Reação/fisiologia
2.
J Neurosci ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548336

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typical developing (TD) individuals that may be used for the prediction of individual responses to tDCS. 57 TD male and female children received 2mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporo-parietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, Flanker, Mooney Faces Detection, Attentional Emotional Recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3-Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using a general linear model. Machine learning (ML) algorithms were employed to predict responses to tDCS. Overall, vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioural variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioural measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.Significance statement Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that has recently gained more attention in neurodevelopmental disorders (NDDs), such as autism and attention-deficit/hyperactivity disorder. However, due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical biomarkers in typical developing individuals that may be used for the prediction of individual responses to tDCS. Our findings suggest that it may be possible to accurately predict individual responses to tDCS for some behavioural measures using measures of neuroanatomy. In the future, our models might be extended to predict treatment outcome in individuals with clinical diagnoses, and may allow for more individualized, person-centred interventions.

3.
medRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496607

RESUMO

Introduction: Proof-of-principle human studies suggest that transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) may improve depression severity. This open-label multicenter study tested remotely supervised multichannel tDCS delivered at home in patients (N=35) with major depressive disorder (MDD). The primary aim was to assess the feasibility and safety of our protocol. As an exploratory aim, we evaluated therapeutic efficacy: the primary efficacy measure was the median percent change from baseline to the end of the 4-week post-treatment follow-up period in the observer-rated Montgomery-Asberg Depression Mood Rating Scale (MADRS). Methods: Participants received 37 at-home stimulation sessions (30 minutes each) of specifically designed multichannel tDCS targeting the left DLPFC administered over eight weeks (4 weeks of daily treatments plus 4 weeks of taper), with a follow-up period of 4 weeks following the final stimulation session. The stimulation montage (electrode positions and currents) was optimized by employing computational models of the electric field generated by multichannel tDCS using available structural data from a similar population (group optimization). Conducted entirely remotely, the study employed the MADRS for assessment at baseline, at weeks 4 and 8 during treatment, and at 4-week follow-up visits. Results: 34 patients (85.3% women) with a mean age of 59 years, a diagnosis of MDD according to DSM-5 criteria, and a MADRS score ≥20 at the time of study enrolment completed all study visits. At baseline, the mean time since MDD diagnosis was 24.0 (SD 19.1) months. Concerning compliance, 85% of the participants (n=29) completed the complete course of 37 stimulation sessions at home, while 97% completed at least 36 sessions. No detrimental effects were observed, including suicidal ideation and/or behavior. The study observed a median MADRS score reduction of 64.5% (48.6, 72.4) 4 weeks post-treatment (Hedge's g = -3.1). We observed a response rate (≥ 50% improvement in MADRS scores) of 72.7% (n=24) from baseline to the last visit 4 weeks post-treatment. Secondary measures reflected similar improvements. Conclusions: These results suggest that remotely supervised and supported multichannel home-based tDCS is safe and feasible, and antidepressant efficacy motivates further appropriately controlled clinical studies.

4.
Clin Neurophysiol ; 161: 198-210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520800

RESUMO

OBJECTIVE: The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy. METHODS: We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory). The whole brain model consists of a large-scale network of interconnected neuronal masses, with connectivity based on the human connectome. RESULTS: For these three levels of description, the fine-tuning of free parameters and the quantitative comparison with real data allowed us to reproduce interictal epileptiform discharges with a high degree of fidelity and to formulate hypotheses about the cell- and network-related mechanisms underlying the generation of fast ripples and SEEG-recorded epileptic spikes and spike-waves. CONCLUSIONS: The proposed models provide valuable insights into the pathophysiological mechanisms underlying the generation of epileptic events. The knowledge gained from these models effectively complements the clinical analysis of SEEG data collected during the evaluation of patients with epilepsy. SIGNIFICANCE: These models are likely to play a key role in the mechanistic interpretation of epileptiform activity.


Assuntos
Eletroencefalografia , Epilepsia , Modelos Neurológicos , Humanos , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Córtex Cerebral/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico
5.
Entropy (Basel) ; 26(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275498

RESUMO

We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.

6.
Conscious Cogn ; 117: 103610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056338

RESUMO

Research has shown a prominent role for cortical hyperexcitability underlying aberrant perceptions, hallucinations, and distortions in human conscious experience - even in neurotypical groups. The rVLPFC has been identified as an important structure in mediating cognitive affective states / feeling conscious states. The current study examined the involvement of the rVLPFC in mediating cognitive affective states in those predisposed to aberrant experiences in the neurotypical population. Participants completed two trait-based measures: (i) the Cortical Hyperexcitability Index_II (CHi_II, a proxy measure of cortical hyperexcitability) and (ii) two factors from the Cambridge Depersonalisation Scale (CDS). An optimised 7-channel MtDCS montage for stimulation conditions (Anodal, Cathodal and Sham) was created targeting the rVLPFC in a single-blind study. At the end of each stimulation session, participants completed a body-threat task (BTAB) while skin conductance responses (SCRs) and psychological responses were recorded. Participants with signs of increasing cortical hyperexcitability showed significant suppression of SCRs in the Cathodal stimulation relative to the Anodal and sSham conditions. Those high on the trait-based measures of depersonalisation-like experiences failed to show reliable effects. Collectively, the findings suggest that baseline brain states can mediate the effects of neurostimulation which would be missed via sample level averaging and without appropriate measures for stratifying individual differences.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Método Simples-Cego , Córtex Cerebral , Emoções/fisiologia , Suscetibilidade a Doenças , Córtex Pré-Frontal/fisiologia
7.
Biomed Phys Eng Express ; 9(4)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37160106

RESUMO

Intracranial electrodes are used clinically for diagnostic or therapeutic purposes, notably in drug-refractory epilepsy (DRE) among others. Visualization and quantification of the energy delivered through such electrodes is key to understanding how the resulting electric fields modulate neuronal excitability, i.e. the ratio between excitation and inhibition. Quantifying the electric field induced by electrical stimulation in a patient-specific manner is challenging, because these electric fields depend on a number of factors: electrode trajectory with respect to folded brain anatomy, biophysical (electrical conductivity / permittivity) properties of brain tissue and stimulation parameters such as electrode contacts position and intensity. Here, we aimed to evaluate various biophysical models for characterizing the electric fields induced by electrical stimulation in DRE patients undergoing stereoelectroencephalography (SEEG) recordings in the context of pre-surgical evaluation. This stimulation was performed with multiple-contact intracranial electrodes used in routine clinical practice. We introduced realistic 3D models of electrode geometry and trajectory in the neocortex. For the electrodes, we compared point (0D) and line (1D) sources approximations. For brain tissue, we considered three configurations of increasing complexity: a 6-layer spherical model, a toy model with a sulcus representation, replicating results from previous approaches; and went beyond the state-of-the-art by using a realistic head model geometry. Electrode geometry influenced the electric field distribution at close distances (∼3 mm) from the electrode axis. For larger distances, the volume conductor geometry and electrical conductivity dominated electric field distribution. These results are the first step towards accurate and computationally tractable patient-specific models of electric fields induced by neuromodulation and neurostimulation procedures.


Assuntos
Encéfalo , Eletricidade , Humanos , Encéfalo/fisiologia , Eletrodos , Cabeça , Estimulação Elétrica
8.
PLoS Comput Biol ; 19(4): e1010781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043504

RESUMO

Spatiotemporal oscillations underlie all cognitive brain functions. Large-scale brain models, constrained by neuroimaging data, aim to trace the principles underlying such macroscopic neural activity from the intricate and multi-scale structure of the brain. Despite substantial progress in the field, many aspects about the mechanisms behind the onset of spatiotemporal neural dynamics are still unknown. In this work we establish a simple framework for the emergence of complex brain dynamics, including high-dimensional chaos and travelling waves. The model consists of a complex network of 90 brain regions, whose structural connectivity is obtained from tractography data. The activity of each brain area is governed by a Jansen neural mass model and we normalize the total input received by each node so it amounts the same across all brain areas. This assumption allows for the existence of an homogeneous invariant manifold, i.e., a set of different stationary and oscillatory states in which all nodes behave identically. Stability analysis of these homogeneous solutions unveils a transverse instability of the synchronized state, which gives rise to different types of spatiotemporal dynamics, such as chaotic alpha activity. Additionally, we illustrate the ubiquity of this route towards complex spatiotemporal activity in a network of next generation neural mass models. Altogehter, our results unveil the bifurcation landscape that underlies the emergence of function from structure in the brain.


Assuntos
Encéfalo , Modelos Neurológicos , Neuroimagem
9.
Neuroimage ; 270: 119938, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775081

RESUMO

Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.


Assuntos
Macaca , Neurônios , Animais , Neurônios/fisiologia , Fenômenos Eletrofisiológicos
10.
J Neural Eng ; 20(2)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36758230

RESUMO

Objective.We provide a systematic framework for quantifying the effect of externally applied weak electric fields on realistic neuron compartment models as captured by physiologically relevant quantities such as the membrane potential or transmembrane current as a function of the orientation of the field.Approach.We define a response function as the steady-state change of the membrane potential induced by a canonical external field of 1 V m-1as a function of its orientation. We estimate the function values through simulations employing reconstructions of the rat somatosensory cortex from the Blue Brain Project. The response of different cell types is simulated using the NEURON simulation environment. We represent and analyze the angular response as an expansion in spherical harmonics.Main results.We report membrane perturbation values comparable to those in the literature, extend them to different cell types, and provide their profiles as spherical harmonic coefficients. We show that at rest, responses are dominated by their dipole terms (ℓ=1), in agreement with experimental findings and compartment theory. Indeed, we show analytically that for a passive cell, only the dipole term is nonzero. However, while minor, other terms are relevant for states different from resting. In particular, we show howℓ=0andℓ=2terms can modify the function to induce asymmetries in the response.Significance.This work provides a practical framework for the representation of the effects of weak electric fields on different neuron types and their main regions-an important milestone for developing micro- and mesoscale models and optimizing brain stimulation solutions.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Animais , Ratos , Estimulação Transcraniana por Corrente Contínua/métodos , Potenciais da Membrana , Encéfalo , Cabeça , Neurônios
11.
PLoS Comput Biol ; 19(2): e1010811, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735751

RESUMO

A topic of growing interest in computational neuroscience is the discovery of fundamental principles underlying global dynamics and the self-organization of the brain. In particular, the notion that the brain operates near criticality has gained considerable support, and recent work has shown that the dynamics of different brain states may be modeled by pairwise maximum entropy Ising models at various distances from a phase transition, i.e., from criticality. Here we aim to characterize two brain states (psychedelics-induced and placebo) as captured by functional magnetic resonance imaging (fMRI), with features derived from the Ising spin model formalism (system temperature, critical point, susceptibility) and from algorithmic complexity. We hypothesized, along the lines of the entropic brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a higher Ising temperature and increased complexity. We analyze resting state blood-oxygen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD). Working with the automated anatomical labeling (AAL) brain parcellation, we first create "archetype" Ising models representative of the entire dataset (global) and of the data in each condition. Remarkably, we find that such archetypes exhibit a strong correlation with an average structural connectome template obtained from dMRI (r = 0.6). We compare the archetypes from the two conditions and find that the Ising connectivity in the LSD condition is lower than in the placebo one, especially in homotopic links (interhemispheric connectivity), reflecting a significant decrease of homotopic functional connectivity in the LSD condition. The global archetype is then personalized for each individual and condition by adjusting the system temperature. The resulting temperatures are all near but above the critical point of the model in the paramagnetic (disordered) phase. The individualized Ising temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10-5). Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data and the synthetic data generated with the individualized model using the Metropolis algorithm for each participant and condition. The LZW complexity computed from experimental data reveals a weak statistical relationship with condition (p = 0.04 one-tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably because of the limited length of the BOLD time series. Similarly, we explore complexity using the block decomposition method (BDM), a more advanced method for estimating algorithmic complexity. The BDM complexity of the experimental data displays a significant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the effects of LSD increase the complexity of brain dynamics by loosening interhemispheric connectivity-especially homotopic links. In agreement with earlier work using the Ising formalism with BOLD data, we find the brain state in the placebo condition is already above the critical point, with LSD resulting in a shift further away from criticality into a more disordered state.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Temperatura , Encéfalo , Imageamento por Ressonância Magnética/métodos
12.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36548999

RESUMO

Objective.Stereotactic-electroencephalography (SEEG) and scalp EEG recordings can be modeled using mesoscale neural mass population models (NMMs). However, the relationship between those mathematical models and the physics of the measurements is unclear. In addition, it is challenging to represent SEEG data by combining NMMs and volume conductor models due to the intermediate spatial scale represented by these measurements.Approach.We provide a framework combining the multi-compartmental modeling formalism and a detailed geometrical model to simulate the transmembrane currents that appear in layer 3, 5 and 6 pyramidal cells due to a synaptic input. With this approach, it is possible to realistically simulate the current source density (CSD) depth profile inside a cortical patch due to inputs localized into a single cortical layer and the induced voltage measured by two SEEG contacts using a volume conductor model. Based on this approach, we built a framework to connect the activity of a NMM with a volume conductor model and we simulated an example of SEEG signal as a proof of concept.Main results.CSD depends strongly on the distribution of the synaptic inputs onto the different cortical layers and the equivalent current dipole strengths display substantial differences (of up to a factor of four in magnitude in our example). Thus, the inputs coming from different neural populations do not contribute equally to the electrophysiological recordings. A direct consequence of this is that the raw output of NMMs is not a good proxy for electrical recordings. We also show that the simplest CSD model that can accurately reproduce SEEG measurements can be constructed from discrete monopolar sources (one per cortical layer).Significance.Our results highlight the importance of including a physical model in NMMs to represent measurements. We provide a framework connecting microscale neuron models with the neural mass formalism and with physical models of the measurement process that can improve the accuracy of predicted electrophysiological recordings.


Assuntos
Eletroencefalografia , Imageamento Tridimensional , Eletroencefalografia/métodos , Células Piramidais , Modelos Teóricos , Neurônios
13.
Biol Cybern ; 117(1-2): 5-19, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36454267

RESUMO

Neural mass models (NMMs) are designed to reproduce the collective dynamics of neuronal populations. A common framework for NMMs assumes heuristically that the output firing rate of a neural population can be described by a static nonlinear transfer function (NMM1). However, a recent exact mean-field theory for quadratic integrate-and-fire (QIF) neurons challenges this view by showing that the mean firing rate is not a static function of the neuronal state but follows two coupled nonlinear differential equations (NMM2). Here we analyze and compare these two descriptions in the presence of second-order synaptic dynamics. First, we derive the mathematical equivalence between the two models in the infinitely slow synapse limit, i.e., we show that NMM1 is an approximation of NMM2 in this regime. Next, we evaluate the applicability of this limit in the context of realistic physiological parameter values by analyzing the dynamics of models with inhibitory or excitatory synapses. We show that NMM1 fails to reproduce important dynamical features of the exact model, such as the self-sustained oscillations of an inhibitory interneuron QIF network. Furthermore, in the exact model but not in the limit one, stimulation of a pyramidal cell population induces resonant oscillatory activity whose peak frequency and amplitude increase with the self-coupling gain and the external excitatory input. This may play a role in the enhanced response of densely connected networks to weak uniform inputs, such as the electric fields produced by noninvasive brain stimulation.


Assuntos
Heurística , Neurônios , Simulação por Computador , Neurônios/fisiologia , Sinapses/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia
14.
J Clin Neurophysiol ; 40(1): 53-62, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010226

RESUMO

PURPOSE: Animal and proof-of-principle human studies suggest that cathodal transcranial direct current stimulation may suppress seizures in drug-resistant focal epilepsy. The present study tests the safety, tolerability, and effect size of repeated daily cathodal transcranial direct current stimulation in epilepsy have not been established, limiting development of clinically meaningful interventions. METHODS: We conducted a 2-center, open-label study on 20 participants with medically refractory, focal epilepsy, aged 9 to 56 years (11 women and 9 children younger than18 years). Each participant underwent 10 sessions of 20 minutes of cathodal transcranial direct current stimulation over 2 weeks. Multielectrode montages were designed using a realistic head model-driven approach to conduct an inhibitory electric field to the target cortical seizure foci and surrounding cortex to suppress excitability and reduce seizure rates. Patients recorded daily seizures using a seizure diary 8 weeks prior, 2 weeks during, and 8 to 12 weeks after the stimulation period. RESULTS: The median seizure reduction was 44% relative to baseline and did not differ between adult and pediatric patients. Three patients experienced an increase in seizure frequency of >50% during the stimulation period; in one, a 36% increase in seizure frequency persisted through 12 weeks of follow-up. Otherwise, participants experienced only minor adverse events-the most common being scalp discomfort during transcranial direct current stimulation. CONCLUSIONS: This pilot study supports the safety and efficacy of multifocal, personalized, multichannel, cathodal transcranial direct current stimulation for adult and pediatric patients with medication-refractory focal epilepsy, although identifies a possibility of seizure exacerbation in some. The data also provide insight into the effect size to inform the design of a randomized, sham-stimulation controlled trial.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Estimulação Transcraniana por Corrente Contínua , Adulto , Criança , Feminino , Humanos , Epilepsia Resistente a Medicamentos/terapia , Epilepsias Parciais/terapia , Projetos Piloto , Convulsões , Estimulação Transcraniana por Corrente Contínua/efeitos adversos
15.
J Neural Eng ; 19(5)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36067727

RESUMO

Objective.In partial epilepsies, interictal epileptiform discharges (IEDs) are paroxysmal events observed in epileptogenic zone (EZ) and non-epileptogenic zone (NEZ). IEDs' generation and recurrence are subject to different hypotheses: they appear through glutamatergic and gamma-aminobutyric acidergic (GABAergic) processes; they may trigger seizures or prevent seizure propagation. This paper focuses on a specific class of IEDs, spike-waves (SWs), characterized by a short-duration spike followed by a longer duration wave, both of the same polarity. Signal analysis and neurophysiological mathematical models are used to interpret puzzling IED generation.Approach.Interictal activity was recorded by intracranial stereo-electroencephalography (SEEG) electrodes in five different patients. SEEG experts identified the epileptic and non-epileptic zones in which IEDs were detected. After quantifying spatial and temporal features of the detected IEDs, the most significant features for classifying epileptic and non-epileptic zones were determined. A neurophysiologically-plausible mathematical model was then introduced to simulate the IEDs and understand the underlying differences observed in epileptic and non-epileptic zone IEDs.Main results.Two classes of SWs were identified according to subtle differences in morphology and timing of the spike and wave component. Results showed that type-1 SWs were generated in epileptogenic regions also involved at seizure onset, while type-2 SWs were produced in the propagation or non-involved areas. The modeling study indicated that synaptic kinetics, cortical organization, and network interactions determined the morphology of the simulated SEEG signals. Modeling results suggested that the IED morphologies were linked to the degree of preserved inhibition.Significance.This work contributes to the understanding of different mechanisms generating IEDs in epileptic networks. The combination of signal analysis and computational models provides an efficient framework for exploring IEDs in partial epilepsies and classifying EZ and NEZ.


Assuntos
Epilepsias Parciais , Epilepsia , Simulação por Computador , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador
16.
Neurosci Biobehav Rev ; 142: 104867, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122739

RESUMO

Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.


Assuntos
Transtornos Relacionados ao Uso de Substâncias , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Magnética Transcraniana/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Psicoterapia/métodos , Transtornos Relacionados ao Uso de Substâncias/terapia , Encéfalo/fisiologia
17.
Front Neurosci ; 16: 909421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090277

RESUMO

Purpose: Transcranial electrical current stimulation (tES or tCS, as it is sometimes referred to) has been proposed as non-invasive therapy for pharmacoresistant epilepsy. This technique, which includes direct current (tDCS) and alternating current (tACS) stimulation involves the application of weak currents across the cortex to change cortical excitability. Although clinical trials have demonstrated the therapeutic efficacy of tES, its specific effects on epileptic brain activity are poorly understood. We sought to summarize the clinical and fundamental effects underlying the application of tES in epilepsy. Methods: A systematic review was performed in accordance with the PRISMA guidelines. A database search was performed in PUBMED, MEDLINE, Web of Science and Cochrane CENTRAL for articles corresponding to the keywords "epilepsy AND (transcranial current stimulation OR transcranial electrical stimulation)". Results: A total of 56 studies were included in this review. Through these records, we show that tDCS and tACS epileptic patients are safe and clinically relevant techniques for epilepsy. Recent articles reported changes of functional connectivity in epileptic patients after tDCS. We argue that tDCS may act by affecting brain networks, rather than simply modifying local activity in the targeted area. To explain the mechanisms of tES, various cellular effects have been identified. Among them, reduced cell loss, mossy fiber sprouting, and hippocampal BDNF protein levels. Brain modeling and human studies highlight the influence of individual brain anatomy and physiology on the electric field distribution. Computational models may optimize the stimulation parameters and bring new therapeutic perspectives. Conclusion: Both tDCS and tACS are promising techniques for epilepsy patients. Although the clinical effects of tDCS have been repeatedly assessed, only one clinical trial has involved a consistent number of epileptic patients and little knowledge is present about the clinical outcome of tACS. To fill this gap, multicenter studies on tES in epileptic patients are needed involving novel methods such as personalized stimulation protocols based on computational modeling. Furthermore, there is a need for more in vivo studies replicating the tES parameters applied in patients. Finally, there is a lack of clinical studies investigating changes in intracranial epileptiform discharges during tES application, which could clarify the nature of tES-related local and network dynamics in epilepsy.

18.
J Neural Eng ; 19(5)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35995031

RESUMO

Work in the last two decades has shown that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by increasing excitation and heuristically varying network inhibitory coupling parameters in the models. Based on these early studies, we provide a laminar NMM capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states. With the exception of the external noise input into the pyramidal cell population, the model dynamics are autonomous. By setting the system at a point close to bifurcation, seizure-like transitions are generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic activity. A novel element in the model is a physiologically motivated algorithm for chloride dynamics: the gain of GABAergic post-synaptic potentials is modulated by the pathological accumulation of chloride in pyramidal cells due to high inhibitory input and/or dysfunctional chloride transport. In addition, in order to simulate SEEG signals for comparison with real seizure recordings, the NMM is embedded first in a layered model of the neocortex and then in a realistic physical model. We compare modeling results with data from four epilepsy patient cases. By including key pathophysiological mechanisms, the proposed framework captures succinctly the electrophysiological phenomenology observed in ictal states, paving the way for robust personalization methods based on NMMs.


Assuntos
Eletroencefalografia , Epilepsia , Cloretos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Células Piramidais , Convulsões/diagnóstico
19.
Neural Plast ; 2022: 6197505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880231

RESUMO

Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Mapeamento Encefálico/métodos , Córtex Pré-Frontal Dorsolateral , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Córtex Pré-Frontal/diagnóstico por imagem , Estimulação Transcraniana por Corrente Contínua/métodos
20.
Front Hum Neurosci ; 16: 877241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754767

RESUMO

Purpose: Previous studies have linked gait variability to resting-state functional connectivity between the dorsal attention network (DAN) and the default network (DN) in the brain. The purpose of this study was to examine the effects of a novel transcranial direct current stimulation (tDCS) paradigm designed to simultaneously facilitate the excitability of the DAN and suppress the excitability of the DN (i.e., DAN+/DN-tDCS) on gait variability and other gait characteristics in young healthy adults. Methods: In this double-blinded randomized and sham-controlled study, 48 healthy adults aged 22 ± 2 years received one 20-min session of DAN+/DN-tDCS (n = 24) or no stimulation (the Sham group, n = 24). Immediately before and after stimulation, participants completed a gait assessment under three conditions: walking at self-selected speed (i.e., normal walking), walking as fast as possible (i.e., fast walking), and walking while counting backward (i.e., dual-task walking). Primary outcomes included gait stride time variability and gait stride length variability in normal walking conditions. Secondary outcomes include gait stride time and length variability in fast and dual-task conditions, and other gait metrics derived from the three walking conditions. Results: Compared to the Sham group, DAN+/DN-tDCS reduced stride length variability in normal and fast walking conditions, double-limb support time variability in fast and dual-task walking conditions, and step width variability in fast walking conditions. In contrast, DAN+/DN-tDCS did not alter average gait speed or the average value of any other gait metrics as compared to the sham group. Conclusion: In healthy young adults, a single exposure to tDCS designed to simultaneously modulate DAN and DN excitability reduced gait variability, yet did not alter gait speed or other average gait metrics, when tested just after stimulation. These results suggest that gait variability may be uniquely regulated by these spatially-distinct yet functionally-connected cortical networks. These results warrant additional research on the short- and longer-term effects of this type of network-based tDCS on the cortical control of walking in younger and older populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...