Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138377

RESUMO

How nice would it be to obtain the size distribution of a nanoparticle dispersion fast and without electron microscope measurements? UV-Vis-NIR spectrophotometry offers a very rapid solution; however, the spectra interpretation can be very challenging and needs to take into account the size distribution of the nanoparticles and agglomeration. This work suggests a Monte Carlo method for rapid fitting UV-Vis-NIR spectra using one or two size distributions starting from a dataset of precomputed spectra based on Mie theory. The proposed algorithm is tested on copper nanoparticles produced with Pulsed Laser Ablation in Liquid and on gold nanoparticles from the literature. The fitted distribution results are comparable with Transmission Electron Microscope results and, in some cases, reflect the presence of agglomeration.

2.
ACS Appl Nano Mater ; 6(20): 19126-19135, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37915835

RESUMO

Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.

3.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049255

RESUMO

Non-enzymatic electrochemical glucose sensors are of great importance in biomedical applications, for the realization of portable diabetic testing kits and continuous glucose monitoring systems. Nanostructured materials show a number of advantages in the applications of analytical electrochemistry, compared to macroscopic electrodes, such as great sensitivity and little dependence on analyte diffusion close to the electrode-solution interface. Obtaining electrodes based on nanomaterials without using expensive lithographic techniques represents a great added value. In this paper, we modeled the chronoamperometric response towards glucose determination by four electrodes consisting of nanostructured gold onto graphene paper (GP). The nanostructures were obtained by electrochemical etch, thermal and laser processes of thin gold layer. We addressed experiments obtaining different size and shape of gold nanostructures. Electrodes have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and chronoamperometry. We modeled the current-time response at the potential corresponding to two-electrons oxidation process of glucose by the different nanostructured gold systems. The finest nanostructures of 10-200 nm were obtained by laser dewetting of 17 nm thin and 300 °C thermal dewetting of 8 nm thin gold layers, and they show that semi-infinite linear diffusion mechanism predominates over radial diffusion. Electrochemical etching and 17 nm thin gold layer dewetted at 400 °C consist of larger gold islands up to 1 µm. In the latter case, the current-time curves can be fitted by a two-phase exponential decay function that relies on the mixed second-order formation of adsorbed glucose intermediate followed by its first-order decay to gluconolactone.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770523

RESUMO

Recently, hydrogen evolution reaction (HER) in alkaline media has received a renewed interest both in the fundamental research as well as in practical applications. Pulsed Laser Ablation in Liquid (PLAL) has been demonstrated as a very useful technique for the unconventional preparation of nanomaterials with amazing electro-catalyst properties toward HER, compared to those of nanomaterials prepared by conventional methods. In this paper, we compared the electro-sorption properties of hydrogen in alkaline media by Pt, Pd, Pt80Pd20, and Cu(OH)2 nanoparticles (NPs) prepared by PLAL. The NPs were placed onto graphene paper (GP). Noble metal particles have an almost spherical shape, whereas Cu(OH)2 presents a flower-bud-like shape, formed by very thin nanowalls. XPS analyses of Cu(OH)2 are compatible with a high co-ordination of Cu(II) centers by OH and H2O. A thin layer of perfluorosulfone ionomer placed onto the surface of nanoparticles (NPs) enhances their distribution on the surface of graphene paper (GP), thereby improving their electro-catalytic properties. The proposed mechanisms for hydrogen evolution reaction (HER) on noble metals and Cu(OH)2 are in line with the adsorption energies of H, OH, and H2O on the surfaces of Pt, Pd, and oxidized copper. A significant spillover mechanism was observed for the noble metals when supported by graphene paper. Cu(OH)2 prepared by PLAL shows a competitive efficiency toward HER that is attributed to its high hydrophilicity which, in turn, is due to the high co-ordination of Cu(II) centers in very thin Cu(OH)2 layers by OH- and H2O. We propose the formation of an intermediate complex with water which can reduce the barrier energy of water adsorption and dissociation.

5.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233188

RESUMO

Cu nanoparticles were produced by using solid-state dewetting (dry) of a 1.3 nm Cu layer or laser ablation of a Cu solid target (wet) in acetone and methanol. The morphology and chemical composition of the nanoparticles were investigated as a function of the synthesis methods and their key parameters of the annealing temperature (200-500 °C) and the liquid environment during the ablation. Cu nanoparticles were then embedded in transparent conductive oxide (TCO) films as aluminum-doped zinc oxide (AZO) or zirconium-doped indium oxide (IZrO); the TCObott/Cu nanoparticle/TCOtop structures were synthesized with all combinations of AZO and IZrO as the top and bottom layers. The goal was to achieve a plasmonic and conductive structure for photovoltaic applications via a comparison of the involved methods and all fabricated structures. In particular, solid-state dewetting produced faceted or spherical (depending on the annealing temperature) nanoparticles with an average size below 150 nm while laser ablation produced spherical nanoparticles below 250 nm. Dry and wet plasmonic conductive structures as a function of the TCOs employed and the temperature of annealing could reach a sheet resistance of 86 Ω/sq. The energy band-gap Egap, absorbance, transmittance, and reflectance of the plasmonic conductive structures were investigated in the UV-vis-NIR range. They showed a dependence on the sequence of the top and bottom TCO, with best transmittances of 89.4% for the dry plasmonic conductive structure and 84.7% for the wet plasmonic conductive structure. The latter showed a higher diffused transmittance of between 10-20% in the visible range.


Assuntos
Nanopartículas , Óxido de Zinco , Acetona , Alumínio , Metanol , Nanopartículas/química , Compostos Orgânicos , Óxidos , Zinco , Óxido de Zinco/química , Zircônio
6.
Micromachines (Basel) ; 13(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35744577

RESUMO

Sustainable and renewable production of hydrogen by water electrolysers is expected to be one of the most promising methods to satisfy the ever-growing demand for renewable energy production and storage. Hydrogen evolution reaction in alkaline electrolyte is still challenging due to its slow kinetic properties. This study proposes new nanoelectrode arrays for high Faradaic efficiency of the electro-sorption reaction of hydrogen in an alkaline electrolyte. A comparative study of the nanoelectrode arrays, consisting of platinum or palladium or bimetallic nanoparticles (NPs) Pt80Pd20 (wt.%), obtained by nanosecond pulsed laser ablation in aqueous environment, casted onto graphene paper, is proposed. The effects of thin films of perfluoro-sulfonic ionomer on the material morphology, nanoparticles dispersion, and electrochemical performance have been investigated. The NPs-GP systems have been characterized by field emission scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge cycles. Faradaic efficiency up to 86.6% and hydrogen storage capacity up to 6 wt.% have been obtained by the Pt-ionomer and Pd/Pt80Pd20 systems, respectively.

7.
Micromachines (Basel) ; 13(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208371

RESUMO

Herein, Cu nanostructures are obtained by solid-state dewetting of 9 nm copper layer (dry) or by ablating copper target, using a nanosecond pulsed laser at 1064 nm, in acetone and isopropyl alcohol (wet). The Cu nanostructures are embedded in aluminum-doped zinc oxide layer. Then, the electrical, optical, and morphological properties of the two kinds of systems, as a function of their synthesis parameters, are investigated. The aim is to compare the two fabrication methods and select the main conditions to achieve the best system for photovoltaic applications. The main differences, exhibited by the wet and dry processes, were in the shape and size of the Cu nanostructures. Dewetting in nitrogen produces faceted nanoparticles, with an average size below 150 nm, while laser ablation originates spherical and smaller nanoparticles, below 50 nm. Dry system underwent to thermal annealing, which improves the electrical properties, compared to the wet system, with a sheet resistance of 103 vs. 106 Ω/sq, respectively; finally, the dry system shows a maximum transmittance of 89.7% at 697 nm, compared to the wet system in acetone, 88.4% at 647 nm, as well as in isopropyl alcohol, 86.9% at 686 nm. Moreover, wet systems show higher transmittance in NUV.

8.
Nanotechnology ; 33(4)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610585

RESUMO

Glucose electrochemical sensors based on nanostructures of CuO/Cu(OH)2onto graphene paper were prepared by thermal (solid) and nanosecond pulsed laser (molten phase) dewetting of a CuO layer 6 nm thin deposited by sputtering. Dewetted systems, obtained without the use of any binder, act as array of nanoelectrodes. Solid state and molten phase dewetting produce nanostructures of copper oxide-hydroxide with different average size, shape and surface composition. Molten phase dewetting originates particles with size below 100 nm, while solid state dewetting produces particles with average size of about 200 nm. Moreover, molten phase dewetting produce drop-shaped nanostructures, conversely nanostructures derived from solid state dewetting are multifaceted. X-ray photoelectron spectroscopy (XPS) characterization revealed that the surface of nanostructures is formed by a copper(II) species CuO and Cu(OH)2. Shape of anodic branch of the cyclic voltammograms of glucose in alkali solution evidenced a convergent diffusion mechanism. Analytical performances in amperometric mode are as good as or better than other sensors based on copper oxide. Amperometric detection of glucose was done at potential as low as 0.4 V versus saturated calomel electrode by both types of electrodes. Linear range from 50µM to 10 mM, sensitivity ranging from 7 to 43µA cm-2mM-1and detection limit of 7µM was obtained. Good analytical performances were obtained by laser dewetted electrodes with a low copper content up to 1.2 by atoms percentage of the surface. Analytical performance of the proposed electrodes is compliant for the determination of glucose both in blood serum, saliva or tear.

9.
Micromachines (Basel) ; 12(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34577695

RESUMO

Ag and Au nanostructures became increasingly interesting due to their localized surface plasmon resonance properties. These properties can be successfully exploited in order to enhance the light trapping in solar cell devices by appropriate light scattering phenomena. In solar cell applications, the Ag or Au nanoparticles are, usually, supported on or embedded in a thin transparent conductive oxide layer, mainly AZO and ITO for inorganic solar cells and PEDOT:PSS for organic solar cells. However, the light scattering properties strongly depend on the shape and size of the metal nanostructures and on the optical properties of the surrounding environment. Therefore, the systems need to be well designed to maximize scattering and minimize the light absorption within the metal nanoparticles. In this regard, this work reports, in particular, results concerning calculations, by using the Mie theory, of the angle-dependent light scattering intensity (I(θ)) for spherical Ag and Au nanoparticles coated by a shell of AZO or ITO or PEDOT:PSS. I(θ) and scattering efficiency Qscatt for the spherical core-shell nanoparticles are calculated by changing the radius R of the spherical core (Ag or Au) and the thickness d of the shell (AZO, ITO, or PEDOT:PSS). For each combination of core-shell system, the evolution of I(θ) and Qscatt with the core and shell sizes is drawn and comparisons between the various types of systems is drawn at parity of core and shell sizes. For simplicity, the analysis is limited to spherical core-shell nanoparticles so as to use the Mie theory and to perform analytically exact calculations. However, the results of the present work, even if simplified, can help in establishing the general effect of the core and shell sizes on the light scattering properties of the core-shell nanoparticles, essential to prepare the nanoparticles with desired structure appropriate to the application.

10.
Micromachines (Basel) ; 12(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442471

RESUMO

In this work, an investigation of the properties of nanoscale-thick Ti/TiN, TiN, W, WN layers as diffusion barriers between Si and Al is carried out in view of Si-based electronic applications. Heat treatments were performed on the samples to activate interdiffusion between Si and Al. Changing annealing time and temperature, each sample was morphologically characterized by scanning electron microscopy and atomic force microscopy and compositionally characterized by Rutherford backscattering analysis. The aim is to evaluate the efficiency of the layers as diffusion barriers between Si and Al and, at the same time, to evaluate the surface morphological changes upon annealing processes.

11.
Micromachines (Basel) ; 12(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810270

RESUMO

Bimetallic nanoparticles show novel electronic, optical, catalytic or photocatalytic properties different from those of monometallic nanoparticles and arising from the combination of the properties related to the presence of two individual metals but also from the synergy between the two metals. In this regard, bimetallic nanoparticles find applications in several technological areas ranging from energy production and storage to sensing. Often, these applications are based on optical properties of the bimetallic nanoparticles, for example, in plasmonic solar cells or in surface-enhanced Raman spectroscopy-based sensors. Hence, in these applications, the specific interaction between the bimetallic nanoparticles and the electromagnetic radiation plays the dominant role: properties as localized surface plasmon resonances and light-scattering efficiency are determined by the structure and shape of the bimetallic nanoparticles. In particular, for example, concerning core-shell bimetallic nanoparticles, the optical properties are strongly affected by the core/shell sizes ratio. On the basis of these considerations, in the present work, the Mie theory is used to analyze the light-scattering properties of bimetallic core-shell spherical nanoparticles (Au/Ag, AuPd, AuPt, CuAg, PdPt). By changing the core and shell sizes, calculations of the intensity of scattered light from these nanoparticles are reported in polar diagrams, and a comparison between the resulting scattering efficiencies is carried out so as to set a general framework useful to design light-scattering-based devices for desired applications.

12.
Micromachines (Basel) ; 11(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142922

RESUMO

Nowadays, gold nanoparticles Au nanoparticles (AuNPs) capture great interest due to their chemical stability, optical properties and biocompatibility. The success of technologies based on the use of AuNPs implies the development of simple synthesis methods allowing, also, the fine control over their properties (shape, sizes, structure). Here, we present the AuNPs fabrication by nanosecond pulsed laser ablation in citrate-solution, that has the advantage of being a simple, economic and eco-sustainable method to fabricate colloidal solutions of NPs. We characterized the stability and the absorbance of the solutions by Ultraviolet-Visible (UV-Vis) spectroscopy and the morphology of the AuNPs by Transmission Electron Microscopy. In addition, we used the AuNPs solutions as colorimetric sensor to detect the amount of glyphosate in liquid. Indeed, glyphosate is one of the most widely used herbicides which intensive use represents a risk to human health. The glyphosate presence in the colloidal AuNPs solutions determines the aggregation of the AuNPs causing the change in the color of the solution. The variation of the optical properties of the colloidal solutions versus the concentration of glyphosate is studied.

13.
Nanomaterials (Basel) ; 10(8)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824875

RESUMO

There is a huge demand for rapid, reliable and low-cost methods for the analysis of heavy metals in drinking water, particularly in the range of sub-part per billion (ppb). In the present work, we describe the preparation, characterization and analytical performance of the disposable sensor to be employed in Square Wave Anodic Stripping Voltammetry (SWASV) for ultra-trace simultaneous determination of cadmium and lead. The electrode consists of graphene paper-perfluorosulfonic ionomer-bismuth nano-composite material. The electrode preparation implies a key step aimed to enhance the Bi3+ adsorption into nafion film, prior to the bismuth electro-deposition. Finely dispersed bismuth nanoparticles embedded in the ionomer film are obtained. The electrode was characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Electrochemical Impedance Spectroscopy (EIS). The electrode shows a linear response in the 5-100 ppb range, a time-stability tested up to almost three months, and detection limits up to 0.1 ppb for both Pb2+ and Cd2+. The electrode preparation method is simple and low in cost and the obtained analytical performance is very competitive with the state of art for the SWASV determination of Pb2+ and Cd2+ in solution.

14.
Micromachines (Basel) ; 11(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295291

RESUMO

Bimetallic Au/Pd nanoscale-thick films were sputter-deposited at room temperature on a silicon carbide (SiC) surface, and the surface-morphology evolution of the films versus thickness was studied with scanning electron microscopy. This study allowed to elucidate the Au/Pd growth mechanism by identifying characteristic growth regimes, and to quantify the characteristic parameters of the growth process. In particular, we observed that the Au/Pd film initially grew as three-dimensional clusters; then, increasing Au/Pd film thickness, film morphology evolved from isolated clusters to partially coalesced wormlike structures, followed by percolation morphology, and, finally, into a continuous rough film. The application of the interrupted coalescence model allowed us to evaluate a critical mean cluster diameter for partial coalescence, and the application of Vincent's model allowed us to quantify the critical Au/Pd coverage for percolation transition.

15.
Nanomaterials (Basel) ; 9(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390842

RESUMO

Metal nanostructures are, nowadays, extensively used in applications such as catalysis, electronics, sensing, optoelectronics and others. These applications require the possibility to design and fabricate metal nanostructures directly on functional substrates, with specifically controlled shapes, sizes, structures and reduced costs. A promising route towards the controlled fabrication of surface-supported metal nanostructures is the processing of substrate-deposited thin metal films by fast and ultrafast pulsed lasers. In fact, the processes occurring for laser-irradiated metal films (melting, ablation, deformation) can be exploited and controlled on the nanoscale to produce metal nanostructures with the desired shape, size, and surface order. The present paper aims to overview the results concerning the use of fast and ultrafast laser-based fabrication methodologies to obtain metal nanostructures on surfaces from the processing of deposited metal films. The paper aims to focus on the correlation between the process parameter, physical parameters and the morphological/structural properties of the obtained nanostructures. We begin with a review of the basic concepts on the laser-metal films interaction to clarify the main laser, metal film, and substrate parameters governing the metal film evolution under the laser irradiation. The review then aims to provide a comprehensive schematization of some notable classes of metal nanostructures which can be fabricated and establishes general frameworks connecting the processes parameters to the characteristics of the nanostructures. To simplify the discussion, the laser types under considerations are classified into three classes on the basis of the range of the pulse duration: nanosecond-, picosecond-, femtosecond-pulsed lasers. These lasers induce different structuring mechanisms for an irradiated metal film. By discussing these mechanisms, the basic formation processes of micro- and nano-structures is illustrated and justified. A short discussion on the notable applications for the produced metal nanostructures is carried out so as to outline the strengths of the laser-based fabrication processes. Finally, the review shows the innovative contributions that can be proposed in this research field by illustrating the challenges and perspectives.

16.
Nanomaterials (Basel) ; 9(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888252

RESUMO

Non-enzymatic electrochemical glucose sensing was obtained by gold nanostructures on graphene paper, produced by laser or thermal dewetting of 1.6 and 8 nm-thick Au layers, respectively. Nanosecond laser annealing produces spherical nanoparticles (AuNPs) through the molten-phase dewetting of the gold layer and simultaneous exfoliation of the graphene paper. The resulting composite electrodes were characterized by X-ray photoelectron spectroscopy, cyclic voltammetry, scanning electron microscopy, micro Raman spectroscopy and Rutherford back-scattering spectrometry. Laser dewetted electrode presents graphene nanoplatelets covered by spherical AuNPs. The sizes of AuNPs are in the range of 10-150 nm. A chemical shift in the XPS Au4f core-level of 0.25-0.3 eV suggests the occurrence of AuNPs oxidation, which are characterized by high stability under the electrochemical test. Thermal dewetting leads to electrodes characterized by faceted not oxidized gold structures. Glucose was detected in alkali media at potential of 0.15-0.17 V vs. saturated calomel electrode (SCE), in the concentration range of 2.5µM-30 mM, exploiting the peak corresponding to the oxidation of two electrons. Sensitivity of 1240 µA mM-1 cm-2, detection limit of 2.5 µM and quantifications limit of 20 µM were obtained with 8 nm gold equivalent thickness. The analytical performances are very promising and comparable to the actual state of art concerning gold based electrodes.

17.
Sci Rep ; 8(1): 5001, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29568060

RESUMO

A new concept in the formulation of hybrid nanostructured materials combining high quality graphene 3D supported by Nickel foam and polyporphyrins for visible light photocatalytic application is here reported. Our innovative approach involves the development of a freestanding device able to: i) offer a high surface area to bind the photosensitizers by π-π interactions, and ii) enhance stability and photocatalytic efficiency by using cyclic porphyrin polymers. For these purposes, homo- and co-polymerization reactions by using different porphyrin (free or zinc complexed) monomers were performed. The microscopic structures and morphology of graphene polymer nanocomposites were investigated by using Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Atomic Force Microscopy (AFM). Finally, photocatalytic activity under visible light irradiation of the obtained nanocomposites was tested, by using methylene blue (MB) as organic pollutant. The obtained data suggested that hindered cyclic polymeric structures stacked on graphene surface by non-covalent interactions, restrict the formation of non photoactive aggregates and, as a consequence, induce an enhancement of photocatalytic activity. Remarkably, our systems show a degradation efficiency in the visible-light range much higher than other similar devices containing nanoporphyrin units reported in literature.

18.
Nanomaterials (Basel) ; 6(6)2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28335236

RESUMO

Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results-in terms of fabrication methodologies, characterization of the physico-chemical properties and applications-of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures' properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device.

19.
Stud Health Technol Inform ; 175: 111-2, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22942000

RESUMO

In the proposed demonstration we will present DCV (Desktop Cloud Visualization): a unique technology that allows users to remote access 2D and 3D interactive applications over a standard network. This allows geographically dispersed doctors work collaboratively and to acquire anatomical or pathological images and visualize them for further investigations.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Sistemas de Informação em Radiologia , Telerradiologia/métodos , Interface Usuário-Computador , Interpretação de Imagem Assistida por Computador/métodos
20.
Nanotechnology ; 23(39): 395604, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22972303

RESUMO

In this paper we present the extremely peculiar electrical properties of nanoporous Ge. A full and accurate electrical characterization showed an unexpected and extremely high concentration of positive carriers. Electrochemical analyses showed that nanoporous Ge has improved charge transfer properties with respect to bulk Ge. The electrode behavior, together with the large surface-to-volume ratio, make nanoporous Ge an efficient nanostructured template for the realization of other porous materials by electrodeposition. The pores were efficiently decorated by Au nanoparticles of diameter as low as 1-5 nm, prepared by electrochemical deposition. These new results demonstrate the potential and efficient use of nanoporous Ge as a nanostructured template for nano-sized Au aggregates, opening the way for the realization of innovative sensor devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...