Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050137

RESUMO

Increasing age is associated with age-related neural dedifferentiation, a reduction in the selectivity of neural representations, which has been proposed to contribute to cognitive decline in older age. Recent findings indicate that when operationalized in terms of selectivity for different perceptual categories, age-related neural dedifferentiation and the apparent age-invariant association of neural selectivity with cognitive performance are largely restricted to the cortical regions typically recruited during scene processing. It is currently unknown whether this category-level dissociation extends to metrics of neural selectivity defined at the level of individual stimulus items. Here, we examined neural selectivity at the category and item levels using multivoxel pattern similarity analysis (PSA) of fMRI data. Healthy young and older male and female adults viewed images of objects and scenes. Some items were presented singly, while others were either repeated or followed by a "similar lure." In agreement with recent findings, category-level PSA revealed robustly lower differentiation in older than in younger adults in scene-selective, but not object-selective, cortical regions. By contrast, at the item level, robust age-related declines in neural differentiation were evident for both stimulus categories. Additionally, we identified an age-invariant association between category-level scene selectivity in the parahippocampal place area and subsequent memory performance, but no such association was evident for item-level metrics. Lastly, category- and item-level neural metrics were uncorrelated. Thus, the present findings suggest that age-related category- and item-level dedifferentiation depend on distinct neural mechanisms.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Adulto , Masculino , Humanos , Feminino , Idoso , Cognição , Estimulação Luminosa/métodos , Mapeamento Encefálico
2.
Sci Rep ; 13(1): 12980, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563219

RESUMO

Traditional diagnostic formulations of psychotic disorders have low correspondence with underlying disease neurobiology. This has led to a growing interest in using brain-based biomarkers to capture biologically-informed psychosis constructs. Building upon our prior work on the B-SNIP Psychosis Biotypes, we aimed to examine whether structural MRI (an independent biomarker not used in the Biotype development) can effectively classify the Biotypes. Whole brain voxel-wise grey matter density (GMD) maps from T1-weighted images were used to train and test (using repeated randomized train/test splits) binary L2-penalized logistic regression models to discriminate psychosis cases (n = 557) from healthy controls (CON, n = 251). A total of six models were evaluated across two psychosis categorization schemes: (i) three Biotypes (B1, B2, B3) and (ii) three DSM diagnoses (schizophrenia (SZ), schizoaffective (SAD) and bipolar (BD) disorders). Above-chance classification accuracies were observed in all Biotype (B1 = 0.70, B2 = 0.65, and B3 = 0.56) and diagnosis (SZ = 0.64, SAD = 0.64, and BD = 0.59) models. However, the only model that showed evidence of specificity was B1, i.e., the model was able to discriminate B1 vs. CON and did not misclassify other psychosis cases (B2 or B3) as B1 at rates above nominal chance. The GMD-based classifier evidence for B1 showed a negative association with an estimate of premorbid general intellectual ability, regardless of group membership, i.e. psychosis or CON. Our findings indicate that, complimentary to clinical diagnoses, the B-SNIP Psychosis Biotypes may offer a promising approach to capture specific aspects of psychosis neurobiology.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/psicologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/psicologia , Encéfalo/diagnóstico por imagem , Fenótipo , Imageamento por Ressonância Magnética , Biomarcadores
3.
Neurobiol Aging ; 131: 132-143, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633119

RESUMO

Prior functional magnetic resonance imaging findings in young adults indicate that recollection-sensitive neural regions dissociate according to the time courses of their respective recollection effects. Here, we examined whether such dissociations are also evident in older adults. Young and older participants encoded a series of word-image pairs, judging which of the denoted objects was the smaller. At the test, participants judged whether each of a series of test words was old or new. If a word was old, the requirement was to recall the associated image and maintain it over a variable delay period. Older adults demonstrated significantly lower associative memory performance than young adults. Transient recollection effects were identified in the left hippocampus, medial prefrontal cortex, and posterior cingulate, while sustained effects were widespread across left lateral cortex and were also evident in the bilateral striatum. Except for those in the left insula, all effects were age-invariant. These findings suggest that both transient and sustained recollection effects are largely stable across much of the healthy adult life span.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Rememoração Mental , Córtex Cerebral
4.
Neuropsychologia ; 189: 108670, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633516

RESUMO

Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were largely age-invariant and did not vary, or varied minimally, according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have little impact on behavioral and neural estimates of familiarity.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Reconhecimento Psicológico , Cognição , Lobo Temporal
5.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398000

RESUMO

Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were age-invariant and did not vary according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have minimal impact on behavioral and neural estimates of familiarity.

6.
Psychon Bull Rev ; 30(6): 2083-2105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37434046

RESUMO

A longstanding question in memory research is whether recognition is supported by more than one mnemonic process. Dual-process models distinguish recollection of episodic detail from familiarity, while single-process models explain recognition in terms of one process that varies in strength. Dual process models have drawn support from findings that recollection and familiarity elicit distinct electroencephalographic event-related potentials (ERPs): a mid-frontal ERP effect that occurs at around 300-500 ms post-stimulus onset and is often larger for familiarity than recollection contrasts, and a parietal ERP effect that occurs at around 500-800 ms and is larger for recollection than familiarity contrasts. We sought to adjudicate between dual- and single-process models by investigating whether the dissociation between these two ERP effects is reliable over studies. We extracted effect sizes from 41 experiments that had used Remember-Know, source memory, and associative memory paradigms (1,000 participants). Meta-analysis revealed a strong interaction between ERP effect and mnemonic process of the form predicted by dual-process models. Although neither ERP effect was significantly process-selective taken alone, a moderator analysis revealed a larger mid-frontal effect for familiarity than recollection contrasts in studies using the Remember-Know paradigm. Mega-analysis of raw data from six studies further showed significant process-selectivity for both mid-frontal and parietal ERPs in the predicted time windows. On balance, the findings favor dual- over single-process theories of recognition memory, but point to a need to promote sharing of raw data.


Assuntos
Potenciais Evocados , Reconhecimento Psicológico , Humanos , Rememoração Mental , Memória , Eletroencefalografia
7.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37293054

RESUMO

Increasing age is associated with age-related neural dedifferentiation, a reduction in the selectivity of neural representations which has been proposed to contribute to cognitive decline in older age. Recent findings indicate that when operationalized in terms of selectivity for different perceptual categories, age-related neural dedifferentiation, and the apparent age-invariant association of neural selectivity with cognitive performance, are largely restricted to the cortical regions typically recruited during scene processing. It is currently unknown whether this category-level dissociation extends to metrics of neural selectivity defined at the level of individual stimulus items. Here, we examined neural selectivity at the category and item levels using multivoxel pattern similarity analysis (PSA) of fMRI data. Healthy young and older male and female adults viewed images of objects and scenes. Some items were presented singly, while others were either repeated or followed by a 'similar lure'. Consistent with recent findings, category-level PSA revealed robustly lower differentiation in older than younger adults in scene-selective, but not object-selective, cortical regions. By contrast, at the item level, robust age-related declines in neural differentiation were evident for both stimulus categories. Moreover, we identified an age-invariant association between category-level scene-selectivity in the parahippocampal place area and subsequent memory performance, but no such association was evident for item-level metrics. Lastly, category and item-level neural metrics were uncorrelated. Thus, the present findings suggest that age-related category- and item-level dedifferentiation depend on distinct neural mechanisms.

8.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090506

RESUMO

Prior fMRI findings in young adults indicate that recollection-sensitive neural regions dissociate according to the time courses of their respective recollection effects. Here, we examined whether such dissociations are also evident in older adults. Young and older participants encoded a series of word-object image pairs, judging which of the denoted objects was the smaller. At test, participants first judged whether a test word was old or new. For items judged old, they were required to recall the associated image and hold it in mind across a variable delay period. A post-delay cue denoted which of three judgments should be made on the retrieved image. Older adults demonstrated significantly lower associative memory performance than young adults. Replicating prior findings, transient recollection effects were identified in the left hippocampus, medial prefrontal cortex and posterior cingulate, while sustained effects were widespread across left lateral cortex and were also evident in the bilateral striatum. With the exception of those in the left insula, all effects were age-invariant. These findings add to the evidence that recollection-related BOLD effects in different neural regions can be temporally dissociated. Additionally, the findings suggest that both transient and sustained recollection effects are largely stable across much of the healthy adult lifespan.

9.
Cereb Cortex ; 33(10): 6474-6485, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36627250

RESUMO

In a sample comprising younger, middle-aged, and older cognitively healthy adults (N = 375), we examined associations between mean cortical thickness, gray matter volume (GMV), and performance in 4 cognitive domains-memory, speed, fluency, and crystallized intelligence. In almost all cases, the associations were moderated significantly by age, with the strongest associations in the older age group. An exception to this pattern was identified in a younger adult subgroup aged <23 years when a negative association between cognitive performance and cortical thickness was identified. Other than for speed, all associations between structural metrics and performance in specific cognitive domains were fully mediated by mean cognitive ability. Cortical thickness and GMV explained unique fractions of the variance in mean cognitive ability, speed, and fluency. In no case, however, did the amount of variance jointly explained by the 2 metrics exceed 7% of the total variance. These findings suggest that cortical thickness and GMV are distinct correlates of domain-general cognitive ability, that the strength and, for cortical thickness, the direction of these associations are moderated by age, and that these structural metrics offer only limited insights into the determinants of individual differences in cognitive performance across the adult lifespan.


Assuntos
Cognição , Substância Cinzenta , Adulto , Pessoa de Meia-Idade , Humanos , Idoso , Substância Cinzenta/diagnóstico por imagem , Inteligência , Imageamento por Ressonância Magnética , Encéfalo
10.
Cereb Cortex ; 33(8): 4542-4552, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36124666

RESUMO

Memory retrieval effects in the striatum are well documented and robust across experimental paradigms. However, the functional significance of these effects, and whether they are moderated by age, remains unclear. We used functional magnetic resonance imaging paired with an associative recognition task to examine retrieval effects in the striatum in a sample of healthy young, middle-aged, and older adults. We identified anatomically segregated patterns of enhanced striatal blood oxygen level-dependent (BOLD) activity during recollection- and familiarity-based memory judgments. Successful recollection was associated with enhanced BOLD activity in bilateral putamen and nucleus accumbens, and neither of these effects were reliably moderated by age. Familiarity effects were evident in the head of the caudate nucleus bilaterally, and these effects were attenuated in middle-aged and older adults. Using psychophysiological interaction analyses, we observed a monitoring-related increase in functional connectivity between the caudate and regions of the frontoparietal control network, and between the putamen and bilateral retrosplenial cortex and intraparietal sulcus. In all instances, monitoring-related increases in cortico-striatal connectivity were unmoderated by age. These results suggest that the striatum, and the caudate in particular, couples with the frontoparietal control network to support top-down retrieval-monitoring operations, and that the strength of these inter-regional interactions is preserved in later life.


Assuntos
Corpo Estriado , Longevidade , Corpo Estriado/fisiologia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Núcleo Caudado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Mapeamento Encefálico
11.
Neuropsychologia ; 177: 108415, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36343706

RESUMO

The effects of age on encoding-related neural activity predictive of accurate item and source memory judgments were examined with fMRI, with an a priori focus of the inferior frontal gyrus (IFG) and hippocampus. During a scanned study phase, young and older adults viewed a series of pictures of objects and made one of two judgments on each object. At test, which occurred outside of the scanner, an 'old/new' judgment on each test item was followed, for those items endorsed old, by a source judgment querying the study task. Neural activity predictive of accurate subsequent item and source memory judgments was identified in bilateral IFG, several other cortical regions and bilateral hippocampus. Cortical effects were graded in the young group (source > item > miss) but predicted item memory only in the older group. Hippocampal effects exclusively predicted source memory, and the magnitude of these effects did not reliably differ between the age groups. In the older group only, IFG and hippocampal encoding effects were positively correlated across participants with memory performance. Similar findings were evident in the extra-IFG regions demonstrating encoding effects. With the exception of the age-dependent relationship identified for hippocampal encoding effects, the present findings are broadly consistent with those from prior aging studies that employed verbal memoranda and tests of associative recognition. Thus, they extend these prior findings to include non-verbal materials and a different operationalization of episodic recollection. Additionally, the present findings suggest that the sensitivity in older adults of IFG encoding effects to subsequent memory performance reflects a more general tendency for cortical encoding effects to predict memory performance in this age group.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Idoso , Memória , Reconhecimento Psicológico , Julgamento
12.
Cogn Neurosci ; 13(3-4): 165-170, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35148666

RESUMO

We assessed whether neural activity in the hippocampus dissociates according to whether memory test items elicit a subjective sense of recollection or accurate retrieval of contextual information. We reanalyzed a previously acquired dataset from a study in which participants made both objective (source memory for spatial context) and subjective (Remember-Know) judgments for each test item. Results indicated that the hippocampus was exclusively sensitive to the amount of contextual information retrieved, such that accurate source memory judgments were associated with greater activity than inaccurate judgments, regardless of Remember/Know status. The findings add to the evidence that the hippocampus is insensitive to the subjective experience of recollection, but supports retrieval of contextual information.


Assuntos
Memória Episódica , Humanos , Julgamento , Reconhecimento Psicológico , Rememoração Mental , Hipocampo
13.
J Neurosci ; 42(9): 1765-1776, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35017225

RESUMO

Recent research suggests that episodic memory is associated with systematic differences in the localization of neural activity observed during memory encoding and retrieval. The retrieval-related anterior shift is a phenomenon whereby the retrieval of a stimulus event (e.g., a scene image) is associated with a peak neural response which is localized more anteriorly than the response elicited when the stimulus is experienced directly. Here, we examine whether the magnitude of the anterior shift (i.e., the distance between encoding- and retrieval-related response peaks) is moderated by age, and also whether the shift is associated with memory performance. Younger and older human subjects of both sexes underwent fMRI as they completed encoding and retrieval tasks on word-face and word-scene pairs. We localized peak scene and face selectivity for each individual participant within the face-selective precuneus and in three scene-selective (parahippocampal place area [PPA], medial place area, occipital place area) ROIs. In line with recent findings, we identified an anterior shift in the PPA and occipital place area in both age groups and, in older adults only, in the medial place area and precuneus also. Of importance, the magnitude of the anterior shift was larger in older than in younger adults. The shift within the PPA exhibited an age-invariant across-participant negative correlation with source memory performance, such that a smaller displacement between encoding- and retrieval-related neural activity was associated with better performance. These findings provide novel insights into the functional significance of the anterior shift, especially in relation to memory decline in older age.SIGNIFICANCE STATEMENT Cognitive aging is associated with reduced ability to retrieve precise details of previously experienced events. The retrieval-related anterior shift is a phenomenon in which category-selective cortical activity at retrieval is localized anterior to the peak activity at encoding. The shift is thought to reflect a bias at retrieval in favor of semantic and abstract information at the expense of low-level perceptual detail. Here, we report that the anterior shift is exaggerated in older relative to younger adults, and we demonstrate that a larger shift in the parahippocampal place area is associated with poorer memory performance. These findings suggest that the shift is sensitive to increasing age and that it is moderated by the quality and content of the retrieved episode.


Assuntos
Memória Episódica , Idoso , Envelhecimento/fisiologia , Mapeamento Encefálico , Face , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória , Rememoração Mental/fisiologia , Lobo Parietal
14.
Neuroimage ; 250: 118918, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051582

RESUMO

Age-related decline in episodic memory has been partially attributed to older adults' reduced domain general processing resources. In the present study, we examined the effects of divided attention (DA) - a manipulation assumed to further deplete the already limited processing resources of older adults - on the neural correlates of recollection in young and older adults. Participants underwent fMRI scanning while they performed an associative recognition test in single and dual (tone detection) task conditions. Recollection effects were operationalized as greater BOLD activity elicited by test pairs correctly endorsed as 'intact' than pairs correctly or incorrectly endorsed as 'rearranged'. Detrimental effects of DA on associative recognition performance were identified in older but not young adults. The magnitudes of recollection effects did not differ between the single and dual (tone detection) tasks in either age group. Across the task conditions, age-invariant recollection effects were evident in most members of the core recollection network. However, while young adults demonstrated robust recollection effects in left angular gyrus, angular gyrus effects were undetectable in the older adults in either task condition. With the possible exception of this result, the findings suggest that DA did not influence processes supporting the retrieval and representation of associative information in either young or older adults, and converge with prior behavioral findings to suggest that episodic retrieval operations are little affected by DA.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Memória Episódica , Adolescente , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Testes Neuropsicológicos , Texas
15.
Eur J Neurosci ; 54(11): 7876-7885, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34755395

RESUMO

The present study investigated the neural correlates of the own-age bias for face recognition in a repetition suppression paradigm. Healthy young and older adults viewed upright and inverted unfamiliar faces. Some of the upright faces were repeated following one of two delays (lag 0 or lag 11). Repetition suppression effects were observed in bilateral fusiform cortex. However, there were no significant effects indicating an own-age bias in repetition suppression. The absence of these effects is arguably inconsistent with perceptual expertise accounts of own-age biases in face processing. By contrast, the right anterior hippocampus showed an own-age bias (greater activity for own-age compared to other-age faces) when viewing an unfamiliar face for the first time. Given the importance of the hippocampus for episodic memory encoding, we conjecture that the increased hippocampal activity for own-age relative to other-age faces reflects differential engagement of neural processes supporting the episodic encoding of faces and might provide insight into the neural underpinnings of own-age biases in face recognition memory.


Assuntos
Reconhecimento Facial , Memória Episódica , Viés , Hipocampo , Reconhecimento Visual de Modelos , Reconhecimento Psicológico
16.
Brain Cogn ; 153: 105785, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419811

RESUMO

Studies examining the effects of age on the neural correlates of recognition memory have yielded mixed results. In the present study, we employed a modified remember-know paradigm to compare the fMRI correlates of recollection and familiarity in samples of healthy young and older adults. After studying a series of words, participants underwent fMRI scanning during a test phase in which they responded "remember" to a test word if any qualitative information could be recollected about the study event. When recollection failed, participants signaled how confident they were that the test item had been studied. Young and older adults demonstrated statistically equivalent estimates of recollection and familiarity strength, while recognition memory accuracy was significantly lower in the older adults. Robust, age-invariant fMRI effects were evident in two sets of a priori defined brain regions consistently reported in prior studies to be sensitive to recollection and familiarity respectively. In addition, the magnitudes of 'familiarity-attenuation effects' in perirhinal cortex demonstrated age-invariant correlations with estimates of familiarity strength and memory accuracy, replicating prior findings. Together, the present findings add to the evidence that the neural correlates of recognition memory are largely stable across much of the healthy human adult lifespan.


Assuntos
Imageamento por Ressonância Magnética , Reconhecimento Psicológico , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Rememoração Mental
17.
J Neurosci ; 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131036

RESUMO

Functional magnetic resonance imaging (fMRI) is among the foremost methods for mapping human brain function but provides only an indirect measure of underlying neural activity. Recent findings suggest that the neurophysiological correlates of the fMRI blood-oxygen-level-dependent (BOLD) signal might be regionally specific. We examined the neurophysiological correlates of the fMRI BOLD signal in the hippocampus and neocortex, where differences in neural architecture might result in a different relationship between the respective signals. Fifteen human neurosurgical patients (10 female, 5 male) implanted with depth electrodes performed a verbal free recall task while electrophysiological activity was recorded simultaneously from hippocampal and neocortical sites. The same patients subsequently performed a similar version of the task during a later fMRI session. Subsequent memory effects (SMEs) were computed for both imaging modalities as patterns of encoding-related brain activity predictive of later free recall. Linear mixed-effects modelling revealed that the relationship between BOLD and gamma-band SMEs was moderated by the lobar location of the recording site. BOLD and high gamma (70-150 Hz) SMEs positively covaried across much of the neocortex. This relationship was reversed in the hippocampus, where a negative correlation between BOLD and high gamma SMEs was evident. We also observed a negative relationship between BOLD and low gamma (30-70 Hz) SMEs in the medial temporal lobe more broadly. These results suggest that the neurophysiological correlates of the BOLD signal in the hippocampus differ from those observed in the neocortex.Significance Statement:The blood-oxygen-level-dependent (BOLD) signal forms the basis of fMRI but provides only an indirect measure of neural activity. Task-related modulation of BOLD signals are typically equated with changes in gamma-band activity; however, relevant empirical evidence comes largely from the neocortex. We examined neurophysiological correlates of the BOLD signal in the hippocampus, where the differing neural architecture might result in a different relationship between the respective signals. We identified a positive relationship between encoding-related changes in BOLD and gamma-band activity in frontal and parietal cortex. This effect was reversed in the hippocampus, where BOLD and gamma-band effects negatively covaried. These results suggest regional variability in the transfer function between neural activity and the BOLD signal in the hippocampus and neocortex.

18.
Neurobiol Aging ; 102: 73-88, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765433

RESUMO

Retrieval gating refers to the ability to modulate the retrieval of features of a single memory episode according to behavioral goals. Recent findings demonstrate that younger adults engage retrieval gating by attenuating the representation of task-irrelevant features of an episode. Here, we examine whether retrieval gating varies with age. Younger and older adults incidentally encoded words superimposed over scenes or scrambled backgrounds that were displayed in one of three spatial locations. Participants subsequently underwent fMRI as they completed two memory tasks: the background task, which tested memory for the word's background, and the location task, testing memory for the word's location. Employing univariate and multivariate approaches, we demonstrated that younger, but not older adults, exhibited attenuated reinstatement of scene information when it was goal-irrelevant (during the location task). Additionally, in younger adults only, the strength of scene reinstatement in the parahippocampal place area during the background task was related to item and source memory performance. Together, these findings point to an age-related decline in the ability to engage retrieval gating.


Assuntos
Envelhecimento/psicologia , Objetivos , Memória Episódica , Rememoração Mental , Adolescente , Adulto , Idoso , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
19.
Neurobiol Aging ; 102: 89-101, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765434

RESUMO

Prior studies suggest that relationships between regional cortical thickness and domain-specific cognitive performance can be mediated by the relationship between global cortical thickness and domain-general cognition. Whether such findings extend to longitudinal cognitive change remains unclear. Here, we examined the relationships in healthy older adults between cognitive performance, longitudinal cognitive change over 3 years, and cortical thickness at baseline of the left and right inferior frontal gyrus (IFG) and left and right hemispheres. Both right IFG and right hemisphere thickness predicted baseline general cognition and domain-specific cognitive performance. Right IFG thickness was also predictive of longitudinal memory change. However, right IFG thickness was uncorrelated with cognitive performance and memory change after controlling for the mean thickness of other ipsilateral cortical regions. In addition, most identified associations between cortical thickness and specific cognitive domains were nonsignificant after controlling for the variance shared with other cognitive domains. Thus, relationships between right IFG thickness, cognitive performance, and memory change appear to be largely accounted for by more generic relationships between cortical thickness and cognition. This article is part of the Virtual Special Issue titled "COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING". The full issue can be found on ScienceDirect athttps://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Córtex Cerebral/patologia , Cognição , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Memória , Pessoa de Meia-Idade , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia
20.
Neurosci Biobehav Rev ; 126: 146-158, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737103

RESUMO

Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.


Assuntos
Núcleos Anteriores do Tálamo , Neocórtex , Animais , Eletroencefalografia , Hipocampo , Humanos , Memória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...