Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34359631

RESUMO

Cardiovascular side effects are major shortcomings of cancer treatments causing cardiotoxicity and late-onset cardiomyopathy. While doxorubicin (Dox) has been reported as an effective chemotherapy agent, unspecific impairment in cardiomyocyte mitochondria activity has been documented. We demonstrated that the human fetal amniotic fluid-stem cell (hAFS) secretome, namely the secreted paracrine factors within the hAFS-conditioned medium (hAFS-CM), exerts pro-survival effects on Dox-exposed cardiomyocytes. Here, we provide a detailed comparison of the cardioprotective potential of hAFS-CM over the secretome of mesenchymal stromal cells from adipose tissue (hMSC-CM). hAFS and hMSC were preconditioned under hypoxia to enrich their secretome. The cardioprotective effects of hAFS/hMSC-CM were evaluated on murine neonatal ventricular cardiomyocytes (mNVCM) and on their fibroblast counterpart (mNVFib), and their long-term paracrine effects were investigated in a mouse model of Dox-induced cardiomyopathy. Both secretomes significantly contributed to preserving mitochondrial metabolism within Dox-injured cardiac cells. hAFS-CM and hMSC-CM inhibited body weight loss, improved myocardial function, reduced lipid peroxidation and counteracted the impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis induced by Dox. The hAFS and hMSC secretomes can be exploited for inhibiting cardiotoxic detrimental side effects of Dox during cancer therapy, thus ensuring cardioprotection via combinatorial paracrine therapy in association with standard oncological treatments.

2.
Biomed Pharmacother ; 110: 1-8, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30453253

RESUMO

BACKGROUND: Doxorubicin (DOX) is a chemotherapeutic drug limited in its usefulness by an adverse side effect, cardiotoxicity. The mechanisms leading to this detrimental occurrence are not completely clear, and lately many authors focused their attention on the possible role of microRNAs (miRNAs), small regulators of cardiovascular functions, in this phenomenon. Notably, these molecules recently emerged also as potential circulating biomarkers of several cardiac diseases. Thus, the aim of this study was the simultaneous investigation of circulating and cardiac tissue miRNAs expression upon DOX treatment in vivo. METHODS: Twenty C57BL/6 female mice were administered with 24 mg/Kg cumulative dose of DOX or saline (CTRL) for 2 weeks. Echocardiography was performed at baseline and at the end of treatment (T1). Plasma and heart samples were collected at T1, separating atria from left (LV) and right (RV) ventricles, and miRNAs expression was tested by RT-qPCR-based arrays. All putatively DOX-regulated candidates were then validated by single assays in vivo and then evaluated also in murine immortalized cardiomyocytes (HL-1) treated with 1 µM DOX for 24 h. In the end, bioinformatics target prediction was performed for all DOX-miRNAs. RESULTS: Cardiotoxicity onset was diagnosed upon impairment of six cardiac functional parameters in DOX-treated mice at T1. Samples collection, followed by screening and validation steps, identified eleven miRNAs dysregulated by the drug in plasma, while seven resulted as altered in separate heart chambers. Interestingly, miR-34a-5p and miR-451a showed a dysregulation in both plasma and tissue samples of DOX-administered animals, whereas five additional miRNAs presented chamber specific modulation. Of note, in vitro experiments showed a very modest overlap with in vivo results. Bioinformatics prediction analysis performed on miR-34a-5p and miR-451a identified several putative targets presenting no significant association with cardiotoxicity. Anyhow, the same analyses, conducted by combining all miRNAs regulated by DOX in each heart chamber, evidenced a possible dysregulation of the adherens junctions gene network, known to be involved in the onset and progression of dilated cardiomyopathy, an established detrimental side effect of the drug. CONCLUSIONS: This is the first work investigating miRNAs regulation by DOX both in plasma and heart districts of treated animals. Our results indicate a strong association of miR-34a-5p and miR-451a to DOX-induced cardiotoxicity. In addition, the observed altered expression of diverse miRNAs in separated cardiac chambers hints at a specific response to the drug, implying the existence of different players and pathways leading to dysfunction onset.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , MicroRNAs/biossíntese , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Cardiotoxicidade/sangue , Cardiotoxicidade/patologia , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/patologia
3.
Dis Markers ; 2018: 8395651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627229

RESUMO

BACKGROUND: Cardiotoxicity is a detrimental side effect of the anticancer drug doxorubicin (DOX), characterized by progressive heart dysfunction. Circulating microRNAs (miRNAs) are recognized as potential biomarkers of cardiac disease; thus, we aimed to investigate their association with late cardiotoxicity in an animal model of disease. METHODS: Twenty C57BL/6 female mice were administered with 24 mg/kg cumulative dose of DOX or saline during 2 weeks, followed by a recovery period of one month (T42). Echocardiography was performed at baseline and at T42, and plasma samples were collected at T42. The selection of all miRNAs of interest was conducted by literature overview and by screening, followed by RT-qPCR validation. Results. The analysis of cardiac function at T42 evidenced five DOX-treated animals indistinguishable (NoTox) from controls (CTRLs), while four presented heart impairment (Tox). Our analyses identified eight dysfunction-associated plasma miRNAs. In particular, seven miRNAs were found downregulated in comparison to CTRLs, miR-1-3p, miR-122-5p, miR-127-3p, miR-133a-3p, miR-215-5p, miR-455-3-p, and miR-499a-5p. Conversely, miR-34a-5p showed increased levels in Tox plasma samples. Noteworthy, we determined a cluster composed of miR-1-3p, miR-34a-5p, miR-133a-3p, and miR-499a-5p that distinguished with high-accuracy Tox from NoTox mice. CONCLUSION: This is the first study indicating that, similarly to what is observed in patients, DOX-administered animals present a differential cardiac response to treatment. Moreover, our results indicate the presence of specific plasma miRNAs whose expression reflect the presence of cardiac dysfunction in response to drug-induced injury.


Assuntos
Cardiotoxicidade/diagnóstico por imagem , MicroRNA Circulante/genética , Doxorrubicina/efeitos adversos , Marcadores Genéticos , Animais , Cardiotoxicidade/genética , Modelos Animais de Doenças , Ecocardiografia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Família Multigênica
4.
Heart Fail Rev ; 23(1): 109-122, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28944400

RESUMO

Cardiotoxicity is a well-known side effect of doxorubicin (DOX), but the mechanisms leading to this phenomenon are still not completely clear. Prediction of drug-induced dysfunction onset is difficult and is still largely based on detection of cardiac troponin (cTn), a circulating marker of heart damage. In the last years, several investigations focused on the possible involvement of microRNAs (miRNAs) in DOX-induced toxicity in vitro, with contrasting results. Recently, several groups employed animal models to mimic patient's condition, investigate the biological pathways perturbed by DOX, and identify diagnostic markers of cardiotoxicity. We reviewed the results from several studies investigating cardiac miRNAs expression in rodent models of DOX-treatment. We also discussed the data from two publications indicating the possible use of circulating miRNA as biomarkers of DOX-induced cardiotoxicity. Unfortunately, limited information was derived from these studies, as selection methods of candidate-miRNAs and heterogeneity in cardiotoxicity assessment greatly hampered the novelty and robustness of the findings. Nevertheless, at least one circulating miRNA, miR-1, showed a good potential as early biomarker of drug-mediated cardiac dysfunction onset. The use of animal models to investigate DOX-induced cardiotoxicity surely helps narrowing the gap between basic research and clinical practice. Despite this, several issues, including selection of relevant miRNAs and less-than-optimal assessment of cardiotoxicity, greatly limited the results obtained so far. Nonetheless, the association of patients-based studies with the use of preclinical models may be the key to address the many unanswered questions regarding the pathophysiology and early detection of cardiotoxicity.


Assuntos
Cardiomiopatias/induzido quimicamente , Cardiotoxicidade/genética , Doxorrubicina/efeitos adversos , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/uso terapêutico , Cardiomiopatias/genética , Cardiotoxicidade/metabolismo , Doxorrubicina/uso terapêutico , Humanos
5.
Br J Pharmacol ; 174(21): 3713-3726, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28127745

RESUMO

BACKGROUND AND PURPOSE: 5-fluorouracil (5FU) and its prodrug, capecitabine, can damage endothelial cells, whilst endothelial integrity is preserved by glucagon-like peptide 1 (GLP-1). Here, we studied the effect of 5FU on endothelial senescence and whether GLP-1 antagonizes it. EXPERIMENTAL APPROACH: EA.hy926 cells were exposed to 5FU or sera from patients taking capecitabine, with or without pre-incubation with GLP-1. Senescence was identified by expression of senescence-associated ß-galactosidase and p16INK4a and reduced cell proliferation. Soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1) and CD146 (marker of endothelial injury) were measured by ELISA before and at completion of capecitabine chemotherapy. RT-PCR, western blotting, functional experiments with signalling inhibitors and ERK1/2 silencing were performed to characterize 5FU-induced phenotype and elucidate the pathways underlying 5FU and GLP-1 activity. KEY RESULTS: Both 5FU and sera from capecitabine-treated patients stimulated endothelial cell senescence. 5FU-elicited senescence occurred via activation of p38 and JNK, and was associated with decreased eNOS and SIRT-1 levels. Furthermore, 5FU up-regulated VCAM1 and TYMP (encodes enzyme activating capecitabine and 5FU), and sVCAM-1 and CD146 concentrations were higher after than before capecitabine chemotherapy. A non-significant trend for higher ICAM1 levels was also observed. GLP-1 counteracted 5FU-initiated senescence and reduced eNOS and SIRT-1 expression, this protection being mediated by GLP-1 receptor, ERK1/2 and, possibly, PKA and PI3K. CONCLUSIONS AND IMPLICATIONS: 5FU causes endothelial cell senescence and dysfunction, which may contribute to its cardiovascular side effects. 5FU-triggered senescence was prevented by GLP-1, raising the possibility of using GLP-1 analogues and degradation inhibitors to treat 5FU and capecitabine vascular toxicity. LINKED ARTICLES: This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.


Assuntos
Capecitabina/administração & dosagem , Senescência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fluoruracila/toxicidade , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Idoso , Antimetabólitos Antineoplásicos/toxicidade , Western Blotting , Linhagem Celular , Células Endoteliais/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
J Gerontol A Biol Sci Med Sci ; 70(11): 1304-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25352462

RESUMO

Arterial aging is a major risk factor for the occurrence of cardiovascular diseases. The aged artery is characterized by endothelial dysfunction and vascular smooth muscle cells altered physiology together with low-grade chronic inflammation. MicroRNA-34a (miR-34a) has been recently implicated in cardiac, endothelial, and endothelial progenitor cell senescence; however, its contribution to aging-associated vascular smooth muscle cells phenotype has not been explored so far. We found that miR-34a was highly expressed in aortas isolated from old mice. Moreover, its well-known target, the longevity-associated protein SIRT1, was significantly downregulated during aging in both endothelial cells and vascular smooth muscle cells. Increased miR-34a as well as decreased SIRT1 expression was also observed in replicative-senescent human aortic smooth muscle cells. miR-34a overexpression in proliferative human aortic smooth muscle cells caused cell cycle arrest along with enhanced p21 protein levels and evidence of cell senescence. Furthermore, miR-34a ectopic expression induced pro-inflammatory senescence-associated secretory phenotype molecules. Finally, SIRT1 protein significantly decreased upon miR-34a overexpression and restoration of its levels rescued miR-34a-dependent human aortic smooth muscle cells senescence, but not senescence-associated secretory phenotype factors upregulation. Taken together, our findings suggest that aging-associated increase of miR-34a expression levels, by promoting vascular smooth muscle cells senescence and inflammation through SIRT1 downregulation and senescence-associated secretory phenotype factors induction, respectively, may lead to arterial dysfunctions.


Assuntos
Aorta/metabolismo , Senescência Celular/fisiologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/fisiologia , Sirtuína 1/metabolismo , Animais , Aorta/patologia , Técnicas de Cultura de Células , Células Endoteliais/fisiologia , Humanos , Camundongos , MicroRNAs/genética , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...