Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 10(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577529

RESUMO

Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHT⁻INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.

2.
Plant J ; 76(2): 322-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23865633

RESUMO

In Arabidopsis thaliana, light signals modulate the defences against bacteria. Here we show that light perceived by the LOV domain-regulated two-component system (Pst-Lov) of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) modulates virulence against A. thaliana. Bioinformatic analysis and the existence of an episomal circular intermediate indicate that the locus encoding Pst-Lov is present in an active genomic island acquired by horizontal transfer. Strains mutated at Pst-Lov showed enhanced growth on minimal medium and in leaves of A. thaliana exposed to light, but not in leaves incubated in darkness or buried in the soil. Pst-Lov repressed the expression of principal and alternative sigma factor genes and their downstream targets linked to bacterial growth, virulence and quorum sensing, in a strictly light-dependent manner. We propose that the function of Pst-Lov is to distinguish between soil (dark) and leaf (light) environments, attenuating the damage caused to host tissues while releasing growth out of the host. Therefore, in addition to its direct actions via photosynthesis and plant sensory receptors, light may affect plants indirectly via the sensory receptors of bacterial pathogens.


Assuntos
Ilhas Genômicas , Luz , Fotorreceptores Microbianos/genética , Folhas de Planta/microbiologia , Pseudomonas syringae/patogenicidade , Virulência , Arabidopsis/microbiologia , Arabidopsis/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Fases de Leitura Aberta , Óperon , Fotorreceptores Microbianos/efeitos da radiação , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos da radiação , Pseudomonas syringae/genética , Percepção de Quorum , Fator sigma/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(29): 12120-5, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818596

RESUMO

Light signaling pathways and the circadian clock interact to help organisms synchronize physiological and developmental processes with periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Here we describe a family of night light-inducible and clock-regulated genes (LNK) that play a key role linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. A genomewide transcriptome analysis revealed that most light-induced genes respond more strongly to light during the subjective day, which is consistent with the diurnal nature of most physiological processes in plants. However, a handful of genes, including the homologous genes LNK1 and LNK2, are more strongly induced by light in the middle of the night, when the clock is most responsive to this signal. Further analysis revealed that the morning phased LNK1 and LNK2 genes control circadian rhythms, photomorphogenic responses, and photoperiodic dependent flowering, most likely by regulating a subset of clock and flowering time genes in the afternoon. LNK1 and LNK2 themselves are directly repressed by members of the TIMING OF CAB1 EXPRESSION/PSEUDO RESPONSE REGULATOR family of core-clock genes in the afternoon and early night. Thus, LNK1 and LNK2 integrate early light signals with temporal information provided by core oscillator components to control the expression of afternoon genes, allowing plants to keep track of seasonal changes in day length.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinal Luminoso/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Relógios Circadianos/genética , Primers do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transdução de Sinal Luminoso/genética , Análise em Microsséries , Fotoperíodo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Fatores de Transcrição/metabolismo
4.
Physiol Plant ; 146(2): 228-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22462568

RESUMO

Stresses resulting from high transpiration demand induce adjustments in plants that lead to reductions of water loss. These adjustments, including changes in water absorption, transport and/or loss by transpiration, are crucial to normal plant development. Tomato wild type (WT) and phytochrome A (phyA)-mutant plants, fri1-1, were exposed to conditions of either low or high transpiration demand and several morphological and physiological changes were measured during stress conditions. Mutant plants rapidly wilted compared to WT plants after exposure to high evaporative demand. Root size and hydraulic conductivity did not show significant differences between genotypes, suggesting that water absorption and transport through this organ could not explain the observed phenotype. Moreover, stomatal density was similar between genotypes, whereas transpiration and stomatal conductance were both lower in mutant than in WT plants. This was accompanied by a lower stem-specific hydraulic conductivity in mutant plants, which was associated to lower xylem vessel number and transversal area in fri1-1 plants, producing a reduction in water supply to the leaves, which rapidly wilted under high evaporative demand. PhyA signaling might facilitate the adjustment to environments differing widely in water evaporative demand in part through the modulation of xylem dimensions.


Assuntos
Transporte Biológico/fisiologia , Fitocromo A/metabolismo , Transpiração Vegetal/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Água/metabolismo , Aclimatação , Variação Genética , Genótipo , Solanum lycopersicum/genética , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Especificidade da Espécie , Estresse Fisiológico , Luz Solar , Xilema/metabolismo
5.
Nature ; 468(7320): 112-6, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20962777

RESUMO

Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the day-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5'-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Sequência de Bases , Relógios Circadianos/genética , Ritmo Circadiano/genética , Escuridão , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Metilação , Mutação , Proteínas Circadianas Period/genética , Fenótipo , Proteínas Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Fatores de Transcrição/genética
6.
Plant Physiol ; 150(2): 1083-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19363093

RESUMO

In open places, plants are exposed to higher fluence rates of photosynthetically active radiation and to higher red to far-red ratios than under the shade of neighbor plants. High fluence rates are known to increase stomata density. Here we show that high, compared to low, red to far-red ratios also increase stomata density in Arabidopsis (Arabidopsis thaliana). High red to far-red ratios increase the proportion of phytochrome B (phyB) in its active form and the phyB mutant exhibited a constitutively low stomata density. phyB increased the stomata index (the ratio between stomata and epidermal cells number) and the level of anphistomy (by increasing stomata density more intensively in the adaxial than in the abaxial face). phyB promoted the expression of FAMA and TOO MANY MOUTHS genes involved in the regulation of stomata development in young leaves. Increased stomata density resulted in increased transpiration per unit leaf area. However, phyB promoted photosynthesis rates only at high fluence rates of photosynthetically active radiation. In accordance to these observations, phyB reduced long-term water-use efficiency estimated by the analysis of isotopic discrimination against (13)CO(2). We propose a model where active phyB promotes stomata differentiation in open places, allowing plants to take advantage of the higher irradiances at the expense of a reduction of water-use efficiency, which is compensated by a reduced leaf area.


Assuntos
Arabidopsis/fisiologia , Fotossíntese , Fitocromo B/metabolismo , Água/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Luz , Fotossíntese/efeitos da radiação , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA