Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37568956

RESUMO

Muscular skeletal disorder is a difficult challenge faced by the working population. Motion capture (MoCap) is used for recording the movement of people for clinical, ergonomic and rehabilitation solutions. However, knowledge barriers about these MoCap systems have made them difficult to use for many people. Despite this, no state-of-the-art literature review on MoCap systems for human clinical, rehabilitation and ergonomic analysis has been conducted. A medical diagnosis using AI applies machine learning algorithms and motion capture technologies to analyze patient data, enhancing diagnostic accuracy, enabling early disease detection and facilitating personalized treatment plans. It revolutionizes healthcare by harnessing the power of data-driven insights for improved patient outcomes and efficient clinical decision-making. The current review aimed to investigate: (i) the most used MoCap systems for clinical use, ergonomics and rehabilitation, (ii) their application and (iii) the target population. We used preferred reporting items for systematic reviews and meta-analysis guidelines for the review. Google Scholar, PubMed, Scopus and Web of Science were used to search for relevant published articles. The articles obtained were scrutinized by reading the abstracts and titles to determine their inclusion eligibility. Accordingly, articles with insufficient or irrelevant information were excluded from the screening. The search included studies published between 2013 and 2023 (including additional criteria). A total of 40 articles were eligible for review. The selected articles were further categorized in terms of the types of MoCap used, their application and the domain of the experiments. This review will serve as a guide for researchers and organizational management.

2.
Diagnostics (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238264

RESUMO

Breast cancer is the most prevalent cancer worldwide. Thus, it is necessary to improve the efficiency of the medical workflow of the disease. Therefore, this study aims to develop a supplementary diagnostic tool for radiologists using ensemble transfer learning and digital mammograms. The digital mammograms and their associated information were collected from the department of radiology and pathology at Hospital Universiti Sains Malaysia. Thirteen pre-trained networks were selected and tested in this study. ResNet101V2 and ResNet152 had the highest mean PR-AUC, MobileNetV3Small and ResNet152 had the highest mean precision, ResNet101 had the highest mean F1 score, and ResNet152 and ResNet152V2 had the highest mean Youden J index. Subsequently, three ensemble models were developed using the top three pre-trained networks whose ranking was based on PR-AUC values, precision, and F1 scores. The final ensemble model, which consisted of Resnet101, Resnet152, and ResNet50V2, had a mean precision value, F1 score, and Youden J index of 0.82, 0.68, and 0.12, respectively. Additionally, the final model demonstrated balanced performance across mammographic density. In conclusion, this study demonstrates the good performance of ensemble transfer learning and digital mammograms in breast cancer risk estimation. This model can be utilised as a supplementary diagnostic tool for radiologists, thus reducing their workloads and further improving the medical workflow in the screening and diagnosis of breast cancer.

3.
Diagnostics (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428886

RESUMO

This study aims to determine the feasibility of machine learning (ML) and patient registration record to be utilised to develop an over-the-counter (OTC) screening model for breast cancer risk estimation. Data were retrospectively collected from women who came to the Hospital Universiti Sains Malaysia, Malaysia for breast-related problems. Eight ML models were used: k-nearest neighbour (kNN), elastic-net logistic regression, multivariate adaptive regression splines, artificial neural network, partial least square, random forest, support vector machine (SVM), and extreme gradient boosting. Features utilised for the development of the screening models were limited to information in the patient registration form. The final model was evaluated in terms of performance across a mammographic density. Additionally, the feature importance of the final model was assessed using the model agnostic approach. kNN had the highest Youden J index, precision, and PR-AUC, while SVM had the highest F2 score. The kNN model was selected as the final model. The model had a balanced performance in terms of sensitivity, specificity, and PR-AUC across the mammographic density groups. The most important feature was the age at examination. In conclusion, this study showed that ML and patient registration information are feasible to be used as the OTC screening model for breast cancer.

4.
Sci Rep ; 12(1): 11780, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821514

RESUMO

Cerebral small vessel disease is a neurological disease frequently found in the elderly and detected on neuroimaging, often as an incidental finding. White matter hyperintensity is one of the most commonly reported neuroimaging markers of CSVD and is linked with an increased risk of future stroke and vascular dementia. Recent attention has focused on the search of CSVD biomarkers. The objective of this study is to explore the potential of fractal dimension as a vascular neuroimaging marker in asymptomatic CSVD with low WMH burden. Df is an index that measures the complexity of a self-similar and irregular structure such as circle of Willis and its tributaries. This exploratory cross-sectional study involved 22 neurologically asymptomatic adult subjects (42 ± 12 years old; 68% female) with low to moderate 10-year cardiovascular disease risk prediction score (QRISK2 score) who underwent magnetic resonance imaging/angiography (MRI/MRA) brain scan. Based on the MRI findings, subjects were divided into two groups: subjects with low WMH burden and no WMH burden, (WMH+; n = 8) and (WMH-; n = 14) respectively. Maximum intensity projection image was constructed from the 3D time-of-flight (TOF) MRA. The complexity of the CoW and its tributaries observed in the MIP image was characterised using Df. The Df of the CoW and its tributaries, i.e., Df (w) was significantly lower in the WMH+ group (1.5172 ± 0.0248) as compared to WMH- (1.5653 ± 0.0304, p = 0.001). There was a significant inverse relationship between the QRISK2 risk score and Df (w), (rs = - .656, p = 0.001). Df (w) is a promising, non-invasive vascular neuroimaging marker for asymptomatic CSVD with WMH. Further study with multi-centre and long-term follow-up is warranted to explore its potential as a biomarker in CSVD and correlation with clinical sequalae of CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Fractais , Biomarcadores , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Masculino , Neuroimagem
5.
Diagnostics (Basel) ; 12(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453907

RESUMO

Mammographic density is a significant risk factor for breast cancer. In this study, we identified the risk factors of mammographic density in Asian women and quantified the impact of breast density on the severity of breast cancer. We collected data from Hospital Universiti Sains Malaysia, a research- and university-based hospital located in Kelantan, Malaysia. Multivariable logistic regression was performed to analyse the data. Five significant factors were found to be associated with mammographic density: age (OR: 0.94; 95% CI: 0.92, 0.96), number of children (OR: 0.88; 95% CI: 0.81, 0.96), body mass index (OR: 0.88; 95% CI: 0.85, 0.92), menopause status (yes vs. no, OR: 0.59; 95% CI: 0.42, 0.82), and BI-RADS classification (2 vs. 1, OR: 1.87; 95% CI: 1.22, 2.84; 3 vs. 1, OR: 3.25; 95% CI: 1.86, 5.66; 4 vs. 1, OR: 3.75; 95% CI: 1.88, 7.46; 5 vs. 1, OR: 2.46; 95% CI: 1.21, 5.02; 6 vs. 1, OR: 2.50; 95% CI: 0.65, 9.56). Similarly, the average predicted probabilities were higher among BI-RADS 3 and 4 classified women. Understanding mammographic density and its influencing factors aids in accurately assessing and screening dense breast women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...