Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 213: 53-64, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212719

RESUMO

Sediment cores from 47 inland lakes in Michigan, USA were used to assess spatial and temporal trends in loadings of mercury (Hg). Focusing/background corrected accumulation rates and inventories and peak concentrations were used to examine: 1) responses of loadings to post-1990 reductions in emissions, 2) if spatial trends are consistent with modeled Hg deposition and 3) evidence for local and distal inputs. Results showed that decreases in concentrations and anthropogenic accumulation rates of Hg were consistent with recent reductions in emissions of Hg. Most lakes exhibiting a decreasing trend were located within an area with the most emission sources. Not all lakes showed the decreasing trend with some showing increases or no change. These lakes tended to be in the northern portion of the state. In all lakes, current concentrations of Hg remain greater than long-term, historical, background concentrations. Sub-regional mean inventories and mean decadal accumulation rates exhibited a south to north gradient, consistent with previously modeled spatial trends. However, individual lake inventories and rates of accumulation compared at shorter times scales varied among lakes. Evidence for event deposition (e.g., volcanic eruptions, manufacturing) was also variable among lakes. These results suggest influence of more distal inputs of Hg, perhaps driven by well-mixed, global sources. Cause(s) of variability on shorter time scales (e.g., events) needs further work. Finally, the results reveal that understanding risks to humans and ecosystems due to exposure to Hg and developing effective abatement policy is challenging.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Mercúrio/química , Poluentes Químicos da Água/química , Great Lakes Region , Humanos , Mercúrio/análise , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 575: 713-723, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27678048

RESUMO

It is important to understand how dissolved organic carbon (DOC) is processed and transported through stream networks because DOC is a master water quality variable in aquatic ecosystems. High-frequency sampling is necessary to capture important, rapid shifts in DOC source, concentration, and composition (i.e. quality) in streams. Until recently, this high-frequency sampling was logistically difficult or impossible. However, this type of sampling can now be conducted using in-situ optical measurements through long-term, field-deployable fluorometers and spectrophotometers. The optical data collected from these instruments can quantify both DOC concentration and composition properties (e.g., specific ultra-violet absorbance at 254nm, spectral slope ratio, and fluorescence index). Previously, the use of these sensors was limited to a small number of specialized users, mainly in Europe and North America, where they were used predominantly in marine DOC studies as well as water treatment and management infrastructure. However, recent field demonstrations across a wide range of river systems reveals a large potential for the use of these instruments in freshwater environments, heightening interest and demand across multiple environmental research and management disciplines. Hence, this review provides an up-to-date synthesis on 1) the use of spectroscopy as a diagnostic tool in stream DOC studies, 2) the instrumentation, its applications, potential limitations and future considerations, and 3) the new watershed DOC research directions made possible via these in-situ optical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...