Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 33(6): 1428-1441, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32129605

RESUMO

Isopropylated and tert-butylated triarylphosphate esters (ITPs and TBPPs, respectively) are plasticizers and flame retardants that are ubiquitous in indoor environments; however, no studies to date have characterized their metabolism. Using human liver subcellular S9 fractions, phase I and II in vitro metabolism of triphenyl phosphate (TPHP), 4-tert-butylphenyl diphenyl phosphate (4tBPDPP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP), and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) was investigated at 1 and 10 µM doses. Parent depletion and the formation of known or suspected metabolites (e.g., likely hydrolysis or hydroxylated products), including diphenyl phosphate (DPHP), hydroxyl-triphenyl phosphate (OH-TPHP), isopropylphenyl phenyl phosphate (ip-PPP), and tert-butylphenyl phenyl phosphate (tb-PPP), were monitored and quantified via GC/MS or LC-MS/MS. tb-PPP and its conjugates were identified as the major in vitro metabolites of 4tBPDPP and accounted for 71% and 49%, respectively, of the parent molecule that was metabolized during the incubation. While the mass balance between parents and metabolites was conserved for TPHP and 4tBPDPP, approximately 20% of the initial parent mass was unaccounted for after quantifying suspected metabolites of 2IPPDPP and 4IPPDPP that had authentic standards available. Two novel ITP metabolites, mono-isopropenylphenyl diphenyl phosphate and hydroxy-isopropylphenyl diphenyl phosphate, were tentatively identified by high-resolution mass spectrometry and screened for in recently collected human urine where mono-isopropenylphenyl diphenyl phosphate was detected in one of nine samples analyzed. This study provides insight into the biological fate of ITP and TBPP isomers in human tissues and is useful in identifying appropriate biomarkers of exposure to monitor, particularly in support of epidemiological studies.


Assuntos
Poluentes Ambientais/metabolismo , Ésteres/metabolismo , Retardadores de Chama/metabolismo , Fígado/metabolismo , Organofosfatos/metabolismo , Plastificantes/metabolismo , Frações Subcelulares/metabolismo , Biotransformação , Criança , Pré-Escolar , Poluentes Ambientais/urina , Ésteres/urina , Humanos , Organofosfatos/urina
2.
Neurotoxicol Teratol ; 79: 106840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31730801

RESUMO

The rapidly rising incidence of neurodevelopmental disorders with social deficits is raising concern that developmental exposure to environmental contaminants may be contributory. Firemaster 550 (FM 550) is one of the most prevalent flame-retardant (FR) mixtures used in foam-based furniture and baby products and contains both brominated and organophosphate components. We and others have published evidence of developmental neurotoxicity and sex specific effects of FM 550 on anxiety-like and exploratory behaviors. Using a prosocial animal model, we investigated the impact of perinatal FM 550 exposure on a range of socioemotional behaviors including anxiety, attachment, and memory. Virtually unknown to toxicologists, but widely used in the behavioral neurosciences, the prairie vole (Microtus ochrogaster) is a uniquely valuable model organism for examining environmental factors on sociality because this species is spontaneously prosocial, biparental, and displays attachment behaviors including pair bonding. Dams were exposed to 0, 500, 1000, or 2000 µg of FM 550 via subcutaneous (sc) injections throughout gestation, and pups were directly exposed beginning the day after birth until weaning. Adult offspring of both sexes were then subjected to multiple tasks including open field, novel object recognition, and partner preference. Effects were dose responsive and sex-specific, with females more greatly affected. Exposure-related outcomes in females included elevated anxiety, decreased social interaction, decreased exploratory motivation, and aversion to novelty. Exposed males also had social deficits, with males in all three dose groups failing to show a partner preference. Our studies demonstrate the utility of the prairie vole for investigating the impact of chemical exposures on social behavior and support the hypothesis that developmental FR exposure impacts the social brain. Future studies will probe the possible mechanisms by which these effects arise.


Assuntos
Comportamento Animal/efeitos dos fármacos , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Bifenil Polibromatos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Caracteres Sexuais , Animais , Ansiedade/induzido quimicamente , Arvicolinae , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Gravidez , Comportamento Social
3.
Endocrinology ; 160(11): 2748-2758, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31555822

RESUMO

During pregnancy, the supply of thyroid hormone (TH) to the fetus is critically important for fetal growth, neural development, metabolism, and maintenance of pregnancy. Additionally, in cases where maternal and placental TH regulation is significantly altered, there is an increased risk of several adverse pregnancy outcomes. It is unclear what may be disrupting placental TH regulation; however, studies suggest that environmental contaminants, such as polybrominated diphenyl ethers (PBDEs), could be playing a role. In this study, Wistar rats were gestationally exposed to a mixture of PBDEs for 10 days. THs and PBDEs were quantified in paired maternal serum, dissected placenta, and fetuses, and mRNA expression of transporters in the placenta was assessed. Significantly higher concentrations of PBDEs were observed in the fetal portion of the placenta compared with the maternal side, suggesting that PBDEs are actively transported across the interface. PBDEs were also quantified in 10 recently collected human maternal and fetal placental tissues; trends paralleled observations in the rat model. We also observed an effect of PBDEs on T3 levels in dam serum, as well as suggestive changes in the T3 levels of the placenta and fetus that varied by fetal sex. mRNA expression in the placenta also significantly varied by fetal sex and dose. These observations suggest the placenta is a significant modifier of fetal exposures, and that PBDEs are impacting TH regulation in a sex-specific manner during this critical window of development.


Assuntos
Éteres Difenil Halogenados/farmacocinética , Placenta/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Gravidez , Ratos Wistar
4.
Ecol Appl ; 28(6): 1435-1449, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29939451

RESUMO

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9-month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for >50 d longer than in the nutrient-only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem-scale impact of two emerging contaminants and that synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms.


Assuntos
Cobre/toxicidade , Eutrofização , Ouro/toxicidade , Hidróxidos/toxicidade , Nanopartículas/toxicidade , Áreas Alagadas , Hydrocharitaceae/crescimento & desenvolvimento , Oxigênio/metabolismo
5.
Environ Sci Technol ; 50(13): 7056-65, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27253383

RESUMO

Nowadays, silver nanoparticles (AgNPs) are utilized in numerous applications, raising justified concerns about their release into the environment. This study demonstrates the potential to use freshwater crayfish as a benthic-zone indicator of nanosilver and ionic silver pollution. Crayfish were acclimated to 20 L aquaria filled with Hudson River water (HRW) and exposed for 14 days to widely used Creighton AgNPs and Ag(+) at doses of up to 360 µg L(-1) to surpass regulated water concentrations. The uptake and distribution of Ag in over 650 exoskeletons, gills, hepatopancreas and muscles samples were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) in conjunction with two complementary U.S. EPA-endorsed methods: the external calibration and the standard additions. Reflecting the environmental plasticity of the two investigated species, Orconectes virilis accumulated in a dose-dependent manner more Ag than Procambarus clarkii (on average 31% more Ag). Both species showed DNA damage and severe histological changes in the presence of Ag. However, Ag(+) generally led to higher Ag accumulations (28%) and was more toxic. By the harvest day, about 14 ± 9% of the 360 µg L(-1) of AgNP exposure in the HRW oxidized to Ag(+) and may have contributed to the observed toxicities and bioaccumulations. The hepatopancreas (1.5-17.4 µg of Ag g(-1) of tissue) was identified as the best tissue-indicator of AgNP pollution, while the gills (4.5-22.0 µg g(-1)) and hepatopancreas (2.5-16.7 µg g(-1)) complementarily monitored the presence of Ag(+).


Assuntos
Astacoidea , Prata/toxicidade , Animais , Água Doce , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...