Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Eur J Pediatr ; 183(1): 345-355, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37889289

RESUMO

This study aims to inform future genetic reanalysis management by evaluating the yield of whole-exome sequencing (WES) reanalysis in standard patient care in the Netherlands. Single-center data of 159 patients with a neurodevelopmental disorder (NDD), in which WES analysis and reanalysis were performed between January 1, 2014, and December 31, 2021, was retrospectively collected. Patients were included if they were under the age of 18 years at initial analysis and if this initial analysis did not result in a diagnosis. Demographic, phenotypic, and genotypic characteristics of patients were collected and analyzed. The primary outcomes of our study were (i) diagnostic yield at reanalysis, (ii) reasons for detecting a new possibly causal variant at reanalysis, (iii) unsolicited findings, and (iv) factors associated with positive result of reanalysis. In addition, we conducted a questionnaire study amongst the 7 genetic department in the Netherlands creating an overview of used techniques, yield, and organization of WES reanalysis. The single-center data show that in most cases, WES reanalysis was initiated by the clinical geneticist (65%) or treating physician (30%). The mean time between initial WES analysis and reanalysis was 3.7 years. A new (likely) pathogenic variant or VUS with a clear link to the phenotype was found in 20 initially negative cases, resulting in a diagnostic yield of 12.6%. In 75% of these patients, the diagnosis had clinical consequences, as for example, a screening plan for associated signs and symptoms could be devised. Most (32%) of the (likely) causal variants identified at WES reanalysis were discovered due to a newly described gene-disease association. In addition to the 12.6% diagnostic yield based on new diagnoses, reclassification of a variant of uncertain significance found at initial analysis led to a definite diagnosis in three patients. Diagnostic yield was higher in patients with dysmorphic features compared to patients without clear dysmorphic features (yield 27% vs. 6%; p = 0.001). CONCLUSIONS: Our results show that WES reanalysis in patients with NDD in standard patient care leads to a substantial increase in genetic diagnoses. In the majority of newly diagnosed patients, the diagnosis had clinical consequences. Knowledge about the clinical impact of WES reanalysis, clinical characteristics associated with higher yield, and the yield per year after a negative WES in larger clinical cohorts is warranted to inform guidelines for genetic reanalysis. These guidelines will be of great value for pediatricians, pediatric rehabilitation specialists, and pediatric neurologists in daily care of patients with NDD. WHAT IS KNOWN: • Whole exome sequencing can cost-effectively identify a genetic cause of intellectual disability in about 30-40% of patients. • WES reanalysis in a research setting can lead to a definitive diagnosis in 10-20% of previously exome negative cases. WHAT IS NEW: • WES reanalysis in standard patient care resulted in a diagnostic yield of 13% in previously exome negative children with NDD. • The presence of dysmorphic features is associated with an increased diagnostic yield of WES reanalysis.


Assuntos
Exoma , Deficiência Intelectual , Criança , Humanos , Adolescente , Sequenciamento do Exoma , Estudos Retrospectivos , Fenótipo , Exoma/genética , Deficiência Intelectual/diagnóstico , Testes Genéticos/métodos
2.
Eur J Hum Genet ; 31(1): 97-104, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253531

RESUMO

Autosomal dominant variants in LDB3 (also known as ZASP), encoding the PDZ-LIM domain-binding factor, have been linked to a late onset phenotype of cardiomyopathy and myofibrillar myopathy in humans. However, despite knockout mice displaying a much more severe phenotype with premature death, bi-allelic variants in LDB3 have not yet been reported. Here we identify biallelic loss-of-function variants in five unrelated cardiomyopathy families by next-generation sequencing. In the first family, we identified compound heterozygous LOF variants in LDB3 in a fetus with bilateral talipes and mild left cardiac ventricular enlargement. Ultra-structural examination revealed highly irregular Z-disc formation, and RNA analysis demonstrated little/no expression of LDB3 protein with a functional C-terminal LIM domain in muscle tissue from the affected fetus. In a second family, a homozygous LDB3 nonsense variant was identified in a young girl with severe early-onset dilated cardiomyopathy with left ventricular non-compaction; the same homozygous nonsense variant was identified in a third unrelated female infant with dilated cardiomyopathy. We further identified homozygous LDB3 frameshift variants in two unrelated probands diagnosed with cardiomegaly and severely reduced left ventricular ejection fraction. Our findings demonstrate that recessive LDB3 variants can lead to an early-onset severe human phenotype of cardiomyopathy and myopathy, reminiscent of the knockout mouse phenotype, and supporting a loss of function mechanism.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Lactente , Camundongos , Animais , Humanos , Criança , Feminino , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Volume Sistólico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética , Função Ventricular Esquerda
3.
Hum Mol Genet ; 32(3): 386-401, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35981081

RESUMO

De novo deleterious and heritable biallelic mutations in the DNA binding domain (DBD) of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of disorders termed DEAF1-associated neurodevelopmental disorders (DAND). RNA-sequencing using hippocampal RNA from mice with conditional deletion of Deaf1 in the central nervous system indicate that loss of Deaf1 activity results in the altered expression of genes involved in neuronal function, dendritic spine maintenance, development, and activity, with reduced dendritic spines in hippocampal regions. Since DEAF1 is not a dosage-sensitive gene, we assessed the dominant negative activity of previously identified de novo variants and a heritable recessive DEAF1 variant on selected DEAF1-regulated genes in 2 different cell models. While no altered gene expression was observed in cells over-expressing the recessive heritable variant, the gene expression profiles of cells over-expressing de novo variants resulted in similar gene expression changes as observed in CRISPR-Cas9-mediated DEAF1-deleted cells. Altered expression of DEAF1-regulated genes was rescued by exogenous expression of WT-DEAF1 but not by de novo variants in cells lacking endogenous DEAF1. De novo heterozygous variants within the DBD of DEAF1 were identified in 10 individuals with a phenotypic spectrum including autism spectrum disorder, developmental delays, sleep disturbance, high pain tolerance, and mild dysmorphic features. Functional assays demonstrate these variants alter DEAF1 transcriptional activity. Taken together, this study expands the clinical phenotypic spectrum of individuals with DAND, furthers our understanding of potential roles of DEAF1 on neuronal function, and demonstrates dominant negative activity of identified de novo variants.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transtornos do Neurodesenvolvimento/genética , RNA
4.
Neurology ; 99(14): e1511-e1526, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192182

RESUMO

BACKGROUND AND OBJECTIVES: ATP1A3 is associated with a broad spectrum of predominantly neurologic disorders, which continues to expand beyond the initially defined phenotypes of alternating hemiplegia of childhood, rapid-onset dystonia parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndrome. This phenotypic variability makes it challenging to assess the pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurologic disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. METHODS: Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders study with additional cases contributed by collaborators internationally. Detailed clinical data were collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term "ATP1A3" from 2004 to 2021. RESULTS: Twenty-four individuals with a previously undiagnosed neurologic phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurologic features were common including microcephaly (7; 29%), ataxia (13; 54%), dystonia (10; 42%), and hypotonia (7; 29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied, and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1,108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. Combined Annotation-Dependent Depletion (CADD) scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within 6 regions of constraint. DISCUSSION: Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment and evaluating the CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone.


Assuntos
Ataxia Cerebelar , Distúrbios Distônicos , Ataxia Cerebelar/genética , Distúrbios Distônicos/genética , Hemiplegia/genética , Humanos , Mutação/genética , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética
5.
Front Immunol ; 13: 883826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572556

RESUMO

Background: Severe multilineage cytopenia in childhood caused by bone marrow failure (BMF) often represents a serious condition requiring specific management. Patients are at risk for invasive infections and bleeding complications. Previous studies report low rates of identifiable causes of pediatric BMF, rendering most patients with a descriptive diagnosis such as aplastic anemia (AA). Methods: We conducted a multi-center prospective cohort study in which an extensive diagnostic approach for pediatric patients with suspected BMF was implemented. After exclusion of malignant and transient causes of BMF, patients entered thorough diagnostic evaluation including bone marrow analysis, whole exome sequencing (WES) including copy number variation (CNV) analysis and/or single nucleotide polymorphisms (SNP) array analysis. In addition, functional and immunological evaluation were performed. Here we report the outcomes of the first 50 patients (2017-2021) evaluated by this approach. Results: In 20 patients (40%) a causative diagnosis was made. In this group, 18 diagnoses were established by genetic analysis, including 14 mutations and 4 chromosomal deletions. The 2 remaining patients had short telomeres while no causative genetic defect was found. Of the remaining 30 patients (60%), 21 were diagnosed with severe aplastic anemia (SAA) based on peripheral multi-lineage cytopenia and hypoplastic bone marrow, and 9 were classified as unexplained cytopenia without bone marrow hypoplasia. In total 28 patients had undergone hematopoietic stem cell transplantation (HSCT) of which 22 patients with an unknown cause and 6 patients with an identified cause for BMF. Conclusion: We conclude that a standardized in-depth diagnostic protocol as presented here, can increase the frequency of identifiable causes within the heterogeneous group of pediatric BMF. We underline the importance of full genetic analysis complemented by functional tests of all patients as genetic causes are not limited to patients with typical (syndromal) clinical characteristics beyond cytopenia. In addition, it is of importance to apply genome wide genetic analysis, since defects in novel genes are frequently discovered in this group. Identification of a causal abnormality consequently has implications for the choice of treatment and in some cases prevention of invasive therapies.


Assuntos
Anemia Aplástica , Pancitopenia , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Transtornos da Insuficiência da Medula Óssea , Criança , Variações do Número de Cópias de DNA , Humanos , Estudos Prospectivos
6.
Brain ; 145(7): 2301-2312, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35373813

RESUMO

Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.


Assuntos
Proteínas ADAM , Encefalopatias , Epilepsia Resistente a Medicamentos , Proteínas do Tecido Nervoso , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Atrofia , Encefalopatias/genética , Proteína 4 Homóloga a Disks-Large , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
7.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202563

RESUMO

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Assuntos
Histonas , Peixe-Zebra , Animais , Cromatina , DNA , Histonas/metabolismo , Humanos , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
JID Innov ; 1(3): 100022, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34909722

RESUMO

Basan syndrome is an autosomal dominant genodermatosis characterized by congenital adermatoglyphia, transient congenital facial milia, neonatal acral bullae, and absent or reduced sweating. Basan syndrome is rare and has been reported in only 10 kindreds worldwide. It is caused by variants in the skin-specific isoform of SMARCAD1, which starts with an alternative exon 1. All reported variants, except for one large deletion, are point mutations within the donor splice site of the alternative exon 1. In this paper, we report two families with Basan syndrome and describe two SMARCAD1 variants. In one family, we have identified a complex structural variant (a deletion and a nontandem inverted duplication) using whole-genome optical mapping and whole-genome sequencing. Although this variant results in the removal of the first nine exons of SMARCAD1 and exon 1 of the skin-specific isoform, it manifested in the typical Basan phenotype. This suggests that unlike the skin-specific isoform, a single copy of full-length SMARCAD1 is sufficient for its respective function. In the second family, whole-exome sequencing revealed a deletion of 12 base pairs spanning the exon‒intron junction of the alternative exon 1 of the skin-specific SMARCAD1 isoform. In conclusion, we report two additional families with Basan syndrome and describe two SMARCAD1 pathogenic variants.

9.
HGG Adv ; 2(4)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34950897

RESUMO

Xia-Gibbs syndrome (XGS; MIM: 615829) is a phenotypically heterogeneous neurodevelopmental disorder (NDD) caused by newly arising mutations in the AT-Hook DNA-Binding Motif-Containing 1 (AHDC1) gene that are predicted to lead to truncated AHDC1 protein synthesis. More than 270 individuals have been diagnosed with XGS worldwide. Despite the absence of an independent assay for AHDC1 protein function to corroborate potential functional consequences of rare variant genetic findings, there are also reports of individuals with XGS-like trait manifestations who have de novo missense AHDC1 mutations and who have been provided a molecular diagnosis of the disorder. To investigate a potential contribution of missense mutations to XGS, we mapped the missense mutations from 10 such individuals to the AHDC1 conserved protein domain structure and detailed the observed phenotypes. Five newly identified individuals were ascertained from a local XGS Registry, and an additional five were taken from external reports or databases, including one publication. Where clinical data were available, individuals with missense mutations all displayed phenotypes consistent with those observed in individuals with AHDC1 truncating mutations, including delayed motor milestones, intellectual disability (ID), hypotonia, and speech delay. A subset of the 10 reported missense mutations cluster in two regions of the AHDC1 protein with known conserved domains, likely representing functional motifs. Variants outside the clustered regions score lower for computational prediction of their likely damaging effects. Overall, de novo missense variants in AHDC1 are likely diagnostic of XGS when in silico analysis of their position relative to conserved regions is considered together with disease trait manifestations.

12.
NPJ Genom Med ; 6(1): 92, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750377

RESUMO

TET3 encodes an essential dioxygenase involved in epigenetic regulation through DNA demethylation. TET3 deficiency, or Beck-Fahrner syndrome (BEFAHRS; MIM: 618798), is a recently described neurodevelopmental disorder of the DNA demethylation machinery with a nonspecific phenotype resembling other chromatin-modifying disorders, but inconsistent variant types and inheritance patterns pose diagnostic challenges. Given TET3's direct role in regulating 5-methylcytosine and recent identification of syndrome-specific DNA methylation profiles, we analyzed genome-wide DNA methylation in whole blood of TET3-deficient individuals and identified an episignature that distinguishes affected and unaffected individuals and those with mono-allelic and bi-allelic pathogenic variants. Validation and testing of the episignature correctly categorized known TET3 variants and determined pathogenicity of variants of uncertain significance. Clinical utility was demonstrated when the episignature alone identified an affected individual from over 1000 undiagnosed cases and was confirmed upon distinguishing TET3-deficient individuals from those with 46 other disorders. The TET3-deficient signature - and the signature resulting from activating mutations in DNMT1 which normally opposes TET3 - are characterized by hypermethylation, which for BEFAHRS involves CpG sites that may be biologically relevant. This work expands the role of epi-phenotyping in molecular diagnosis and reveals genome-wide DNA methylation profiling as a quantitative, functional readout for characterization of this new biochemical category of disease.

13.
Genet Med ; 23(11): 2122-2137, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34345025

RESUMO

PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


Assuntos
Epilepsia , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Epilepsia/diagnóstico , Epilepsia/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/diagnóstico , Convulsões/genética
14.
Am J Hum Genet ; 108(9): 1692-1709, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34375587

RESUMO

Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.


Assuntos
Encéfalo/metabolismo , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Deficiência Intelectual/genética , Mutação , Receptores de Ácido Caínico/genética , Adolescente , Adulto , Alelos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Epilepsia/diagnóstico por imagem , Epilepsia/metabolismo , Epilepsia/patologia , Potenciais Evocados/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Ativação do Canal Iônico , Masculino , Modelos Moleculares , Neurônios/metabolismo , Neurônios/patologia , Conformação Proteica , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptor de GluK2 Cainato
15.
Genes (Basel) ; 12(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34440449

RESUMO

ARID1B is one of the most frequently mutated genes in intellectual disability (~1%). Most variants are readily classified, since they are de novo and are predicted to lead to loss of function, and therefore classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants. However, familial loss-of-function variants can also occur and can be challenging to interpret. Such variants may be pathogenic with variable expression, causing only a mild phenotype in a parent. Alternatively, since some regions of the ARID1B gene seem to be lacking pathogenic variants, loss-of-function variants in those regions may not lead to ARID1B haploinsufficiency and may therefore be benign. We describe 12 families with potential loss-of-function variants, which were either familial or with unknown inheritance and were in regions where pathogenic variants have not been described or are otherwise challenging to interpret. We performed detailed clinical and DNA methylation studies, which allowed us to confidently classify most variants. In five families we observed transmission of pathogenic variants, confirming their highly variable expression. Our findings provide further evidence for an alternative translational start site and we suggest updates for the ACMG guidelines for the interpretation of sequence variants to incorporate DNA methylation studies and facial analyses.


Assuntos
Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Face/anormalidades , Feminino , Regulação da Expressão Gênica/genética , Deformidades Congênitas da Mão/epidemiologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/fisiopatologia , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
16.
Am J Med Genet A ; 185(12): 3740-3753, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331327

RESUMO

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is caused by de novo loss-of-function variants in the SON gene (MIM #617140). This multisystemic disorder is characterized by intellectual disability, seizures, abnormal brain imaging, variable dysmorphic features, and various congenital anomalies. The wide application and increasing accessibility of whole exome sequencing (WES) has helped to identify new cases of ZTTK syndrome over the last few years. To date, there have been approximately 45 cases reported in the literature. Here, we describe 15 additional individuals with variants in the SON gene, including those with missense variants bringing the total number of known cases to 60. We have reviewed the clinical and molecular data of these new cases and all previously reported cases to further delineate the most common as well as emerging clinical findings related to this syndrome. Furthermore, we aim to delineate any genotype-phenotype correlations specifically for a recurring pathogenic four base pair deletion (c.5753_5756del) along with discussing the impact of missense variants seen in the SON gene.


Assuntos
Anormalidades Congênitas/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Antígenos de Histocompatibilidade Menor/genética , Convulsões/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/patologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Convulsões/diagnóstico , Convulsões/patologia , Sequenciamento do Exoma
17.
Gene ; 768: 145298, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33181255

RESUMO

Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability and autism spectrum disorders. Mostly, FXS is caused by transcriptional silencing of the FMR1 gene due to a repeat expansion in the 5' UTR, and consequently lack of the protein product FMRP. However, in rare cases FXS is caused by other types of variants in the FMR1 gene. We describe a missense variant in the FMR1 gene, identified through whole-exome sequencing, in a boy with intellectual disability and behavioral problems. The variant is located in the FMRP's nuclear export signal (NES). We performed expression and localization studies of the variant in hair roots and HEK293 cells. Our results show normal expression but significant retention of the FMRP in the cells' nucleus. This finding suggests a possible FMRP reduction at its essential functional sites in the dendrites and the synaptic compartments and possible interference of other cellular processes in the nucleus. Together, this might lead to a FXS phenotype in the boy.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Sinais de Exportação Nuclear/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular , Feminino , Síndrome do Cromossomo X Frágil/genética , Células HEK293 , Humanos , Masculino , Fenótipo , Sequenciamento do Exoma/métodos
20.
J Med Genet ; 57(12): 843-850, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32277046

RESUMO

PURPOSE: Although a familial distribution has been documented, the genetic aetiology of mitral valve prolapse (MVP) is largely unknown, with only four genes identified so far: FLNA, DCHS1, DZIP1 and PLD1. The aim of this study was to evaluate the genetic yield in known causative genes and to identify possible novel genes associated with MVP using a heart gene panel based on exome sequencing. METHODS: Patients with MVP were referred for genetic counselling when a positive family history for MVP was reported and/or Barlow's disease was diagnosed. In total, 101 probands were included to identify potentially pathogenic variants in a set of 522 genes associated with cardiac development and/or diseases. RESULTS: 97 (96%) probands were classified as Barlow's disease and 4 (4%) as fibroelastic deficiency. Only one patient (1%) had a likely pathogenic variant in the known causative genes (DCHS1). However, an interesting finding was that 10 probands (11%) had a variant that was classified as likely pathogenic in six different, mostly cardiomyopathy genes: DSP (1×), HCN4 (1×), MYH6 (1×), TMEM67 (1×), TRPS1 (1×) and TTN (5×). CONCLUSION: Exome slice sequencing analysis performed in MVP probands reveals a low genetic yield in known causative genes but may expand the cardiac phenotype of other genes. This study suggests for the first time that also genes related to cardiomyopathy may be associated with MVP. This highlights the importance to screen these patients and their family for the presence of arrhythmias and of 'disproportionate' LV remodelling as compared with the severity of mitral regurgitation, unravelling a possible coexistent cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Prolapso da Valva Mitral/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Miosinas Cardíacas/genética , Cardiomiopatias/patologia , Conectina , Desmoplaquinas/genética , Exoma/genética , Feminino , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Prolapso da Valva Mitral/patologia , Proteínas Musculares/genética , Cadeias Pesadas de Miosina/genética , Linhagem , Canais de Potássio/genética , Proteínas Repressoras/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...