Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Contrast Media Mol Imaging ; 2023: 1944970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36704211

RESUMO

The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH in vivo using pH-sensitive contrast agents. Iopamidol, an iodinated contrast agent, clinically used for computed tomography (CT), contains amide group protons with pH-dependent exchange rates that can reveal the pHe of the tumor microenvironment. In this study, we optimized intraperitoneal (IP) delivery of iopamidol to facilitate longitudinal assessments of orthotopic pancreatic tumor pHe by CEST-MRI. Following IV-infusion and IP-bolus injections, we compared the two protocols for assessing tumor pH. Time-resolved CT imaging was used to evaluate the uptake of iopamidol in the tumor, revealing that IP-bolus delivered a high amount of contrast agent 40 min postinjection, which was similar to the amounts reached with the IV-infusion protocol. As expected, both IP and IV injection protocols produced comparable measurements of tumor pHe, showing no statistically significant difference between groups (p=0.16). In addition, we showed the ability to conduct longitudinal monitoring of tumor pHe using CEST-MRI with the IP injection protocol, revealing a statistically significant increase in tumor pHe following bicarbonate administration (p < 0.001). In conclusion, this study shows the capability to measure pHe using an IP delivery of iopamidol into orthotopic pancreatic tumors, which is important to conduct longitudinal studies.


Assuntos
Iopamidol , Neoplasias Pancreáticas , Humanos , Meios de Contraste , Concentração de Íons de Hidrogênio , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Microambiente Tumoral
2.
BMC Biol ; 20(1): 163, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840963

RESUMO

INTRODUCTION: Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. RESULTS: To test this hypothesis, we stably transfected lowly glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton-exporting systems: either PMA1 (plasma membrane ATPase 1, a yeast H+-ATPase) or CA-IX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher-grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. CONCLUSIONS: Therefore, cancer cells which increase export of H+ equivalents subsequently increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards an upregulation of aerobic glycolysis, a Warburg phenotype. Overall, we have shown that the traditional understanding of cancer cells favoring glycolysis and the subsequent extracellular acidification is not always linear. Cells which can, independent of metabolism, acidify through proton exporter activity can sufficiently drive their metabolism towards glycolysis providing an important fitness advantage for survival.


Assuntos
Neoplasias , Prótons , Glucose/metabolismo , Glicólise/fisiologia , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Neoplasias/metabolismo
3.
Cancer Res ; 79(15): 3952-3964, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31186232

RESUMO

It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and physiologic heterogeneity are related, because physiologically distinct regions will exert variable selection pressures leading to the outgrowth of clones with variable genomic/proteomic profiles. To investigate this, methods must be in place to interrogate and define, at the microscopic scale, the cytotypes that exist within physiologically distinct subregions ("habitats") that are present at mesoscopic scales. MRI provides a noninvasive approach to interrogate physiologically distinct local environments, due to the biophysical principles that govern MRI signal generation. Here, we interrogate different physiologic parameters, such as perfusion, cell density, and edema, using multiparametric MRI (mpMRI). Signals from six different acquisition schema were combined voxel-by-voxel into four clusters identified using a Gaussian mixture model. These were compared with histologic and IHC characterizations of sections that were coregistered using MRI-guided 3D printed tumor molds. Specifically, we identified a specific set of MRI parameters to classify viable-normoxic, viable-hypoxic, nonviable-hypoxic, and nonviable-normoxic tissue types within orthotopic 4T1 and MDA-MB-231 breast tumors. This is the first coregistered study to show that mpMRI can be used to define physiologically distinct tumor habitats within breast tumor models. SIGNIFICANCE: This study demonstrates that noninvasive imaging metrics can be used to distinguish subregions within heterogeneous tumors with histopathologic correlation.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Proteômica/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
4.
J Nucl Med ; 60(8): 1124-1133, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733316

RESUMO

New effective therapies are greatly needed for metastatic uveal melanoma, which has a very poor prognosis with a median survival of less than 1 y. The melanocortin 1 receptor (MC1R) is expressed in 94% of uveal melanoma metastases, and a MC1R-specific ligand (MC1RL) with high affinity and selectivity for MC1R was previously developed. Methods: The 225Ac-DOTA-MC1RL conjugate was synthesized in high radiochemical yield and purity and was tested in vitro for biostability and for MC1R-specific cytotoxicity in uveal melanoma cells, and the lanthanum-DOTA-MC1RL analog was tested for binding affinity. Non-tumor-bearing BALB/c mice were tested for maximum tolerated dose and biodistribution. Severe combined immunodeficient mice bearing uveal melanoma tumors or engineered MC1R-positive and -negative tumors were studied for biodistribution and efficacy. Radiation dosimetry was calculated using mouse biodistribution data and blood clearance kinetics from Sprague-Dawley rat data. Results: High biostability, MC1R-specific cytotoxicity, and high binding affinity were observed. Limiting toxicities were not observed at even the highest administered activities. Pharmacokinetics and biodistribution studies revealed rapid blood clearance (<15 min), renal and hepatobillary excretion, MC1R-specific tumor uptake, and minimal retention in other normal tissues. Radiation dosimetry calculations determined pharmacokinetics parameters and absorbed α-emission dosages from 225Ac and its daughters. Efficacy studies demonstrated significantly prolonged survival and decreased metastasis burden after a single administration of 225Ac-DOTA-MC1RL in treated mice relative to controls. Conclusion: These results suggest significant potential for the clinical translation of 225Ac-DOTA-MC1RL as a novel therapy for metastatic uveal melanoma.


Assuntos
Melanoma/radioterapia , Terapia de Alvo Molecular , Receptor Tipo 1 de Melanocortina/química , Neoplasias Uveais/radioterapia , Partículas alfa , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quelantes/química , Feminino , Humanos , Elementos da Série dos Lantanídeos/química , Masculino , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Metástase Neoplásica , Transplante de Neoplasias , Prognóstico , Radiometria , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley
5.
Oncotarget ; 8(29): 46900-46914, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28159919

RESUMO

IDO1 is an enzyme catalyzing the initial and rate-limiting step in the catabolism of tryptophan along the kynurenine pathway. IDO1 expression could suppress immune responses by blocking T-lymphocyte proliferation locally, suggesting a role of IDO in the regulation of immune responses. The goal of this study was to evaluate the potential of radiofluorinated carboximidamides as selective PET radioligands for IDO1. Specific binding correlated with IDO1 expression as measured through in vitro, microPET experiments. Specific accumulation of the new radiotracer [18F]IDO49 was observed in IDO1-expressing tumors and confirmed by Western blot and IHC analyses. These results suggest that [18F]IDO49 has substantial potential as an imaging agent that targets IDO1 in tumors, and therefore may be utilized as a companion diagnostic for IDO1 targeted therapies.


Assuntos
Radioisótopos de Flúor , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Traçadores Radioativos , Compostos Radiofarmacêuticos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Radioisótopos de Flúor/química , Xenoenxertos , Humanos , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia
6.
Sci Transl Med ; 8(327): 327ra24, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912903

RESUMO

Conventional cancer treatment strategies assume that maximum patient benefit is achieved through maximum killing of tumor cells. However, by eliminating the therapy-sensitive population, this strategy accelerates emergence of resistant clones that proliferate unopposed by competitors-an evolutionary phenomenon termed "competitive release." We present an evolution-guided treatment strategy designed to maintain a stable population of chemosensitive cells that limit proliferation of resistant clones by exploiting the fitness cost of the resistant phenotype. We treated MDA-MB-231/luc triple-negative and MCF7 estrogen receptor-positive (ER(+)) breast cancers growing orthotopically in a mouse mammary fat pad with paclitaxel, using algorithms linked to tumor response monitored by magnetic resonance imaging. We found that initial control required more intensive therapy with regular application of drug to deflect the exponential tumor growth curve onto a plateau. Dose-skipping algorithms during this phase were less successful than variable dosing algorithms. However, once initial tumor control was achieved, it was maintained with progressively smaller drug doses. In 60 to 80% of animals, continued decline in tumor size permitted intervals as long as several weeks in which no treatment was necessary. Magnetic resonance images and histological analysis of tumors controlled by adaptive therapy demonstrated increased vascular density and less necrosis, suggesting that vascular normalization resulting from enforced stabilization of tumor volume may contribute to ongoing tumor control with lower drug doses. Our study demonstrates that an evolution-based therapeutic strategy using an available chemotherapeutic drug and conventional clinical imaging can prolong the progression-free survival in different preclinical models of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Imageamento por Ressonância Magnética , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Análise de Sobrevida , Resultado do Tratamento
7.
Int J Cancer ; 136(4): E188-96, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25156304

RESUMO

ATP-binding cassette (ABC) drug transporters consuming ATPs for drug efflux is a common mechanism by which clinical cancers develop multidrug resistance (MDR). We hypothesized that MDR phenotypes could be suppressed by administration of "ersatzdroges," nonchemotherapy drugs that are, nevertheless, ABC substrates. We reasoned that, through prolonged activation of the ABC pumps, ersatzdroges will force MDR cells to divert limited resources from proliferation and invasion thus delaying disease progression. We evaluated ABC substrates as ersatzdroge by comparing their effects on proliferation and survival of MDR cell lines (MCF-7/Dox and 8226/Dox40) with the effects on the drug-sensitive parental lines (MCF-7 and 8226/s, respectively) in glucose-limited condition. The changes in glucose and energy demands were also examined in vitro and in vivo. MCF-7/Dox showed higher ATP demand and susceptibility to glucose resource limitation. Ersatzdroges significantly decreased proliferation of MCF-7/Dox when the culture media contained physiological glucose concentrations (1.0 g/L) or less, but had no effect on MCF-7. Similar evidence was obtained from 8226/Dox40 and 8226/s comparison. In vivo 18F-FDG-PET imaging demonstrated that glucose uptake was increased by systemic administration of an ersatzdroge in tumors composed of MDR. These results suggest that administration of ersatzdroges, by increasing the metabolic cost of resistance, can suppress proliferation of drug-resistance phenotypes. This provides a novel and relatively simple application model of evolution-based strategy, which can exploit the cost of resistance to delay proliferation of drug-resistant cancer phenotypes. Furthermore, suggested is the potential of ersatzdroges to identify tumors or regions of tumors that express the MDR phenotype.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Resistência a Múltiplos Medicamentos , Eritromicina/farmacologia , Eritromicina/uso terapêutico , Feminino , Expressão Gênica , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Nus , Terapia de Alvo Molecular , Carga Tumoral , Verapamil/farmacologia , Verapamil/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...