Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066627

RESUMO

The broad distribution of quinoa in saline and non-saline environments is reflected in variations in the photosynthesis-associated mechanisms of different ecotypes. The aim of this study was to characterize the photosynthetic response to high salinity (0.4 M NaCl) of two contrasting Chilean genotypes, Amarilla (salt-tolerant, salares ecotype) and Hueque (salt-sensitive, coastal ecotype). Our results show that saline stress induced a significant decrease in the K+/Na+ ratio in roots and an increase in glycine betaine in leaves, particularly in the sensitive genotype (Hueque). Measurement of the photosynthesis-related parameters showed that maximum CO2 assimilation (Amax) in control plants was comparable between genotypes (ca. 9-10 µmol CO2 m-2 s-1). However, salt treatment produced different responses, with Amax values decreasing by 65.1% in the sensitive ecotype and 37.7% in the tolerant one. Although both genotypes maintained mesophyll conductance when stomatal restrictions were removed, the biochemical components of Amarilla were impaired to a lesser extent under salt stress conditions: for example, the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO; Vcmax) was not as affected in Amarilla, revealing that this enzyme has a higher affinity for its substrate in this genotype and, thus, a better carboxylation efficiency. The present results show that the higher salinity tolerance of Amarilla was also due to its ability to control non-diffusional components, indicating its superior photosynthetic capacity compared to Hueque, particularly under salt stress conditions.

2.
Plants (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064292

RESUMO

The nutraceutical interest in quinoa (Chenopodium quinoa Willd.) seeds is associated with the presence of macronutrients, micronutrients, minerals, vitamins, and polyphenols. In particular, polyphenols contribute to the health-promoting effects of this food crop, and their levels are influenced by environmental conditions. Production of quinoa is recently being explored in temperate climate areas, including Italy. The aim of this research was to assess the profile of bioactive compounds in seeds of two quinoa varieties, Regalona-Baer and Titicaca, grown in northern Italy, compared to that of seeds of those varieties grown in Chile and Denmark, respectively. High-performance liquid chromatography-diode array detector (HPLC-DAD) analysis of phenolic acid and flavonoid profiles, both in their free and soluble conjugated forms, showed that the main differences between Regalona grown in Chile and Italy were for the free vanillic acid and daidzein contents, while the two Titicaca samples mainly differed in quercetin derivative levels. The total phenolic index was comparable in Titicaca and Regalona, and only a slight decrease in this parameter was found in seeds of the two varieties grown in Italy. The in vitro antioxidant activity of seed extracts, evaluated by means of three different assays, indicated that it correlated with flavonol (quercetin derivative) levels. In conclusion, the results indicate that, although environmental conditions alter the polyphenolic profile and biological activities, it is possible to grow good-quality quinoa in northern Italy.

3.
Ecotoxicol Environ Saf ; 193: 110345, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092578

RESUMO

Many areas of the world are affected simultaneously by salinity and heavy metal pollution. Halophytes are considered as useful candidates in remediation of such soils due to their ability to withstand both osmotic stress and ion toxicity deriving from high salt concentrations. Quinoa (Chenopodium quinoa Willd) is a halophyte with a high resistance to abiotic stresses (drought, salinity, frost), but its capacity to cope with heavy metals has not yet been fully investigated. In this pot experiment, we investigated phytoextraction capacity, effects on nutrient levels (P and Fe), and changes in gene expression in response to application of Cr(III) in quinoa plants grown on saline or non-saline soil. Plants were exposed for three weeks to 500 mg kg-1 soil of Cr(NO3)3·9H2O either in the presence or absence of 150 mM NaCl. Results show that plants were able tolerate this soil concentration of Cr(III); the metal was mainly accumulated in roots where it reached the highest concentration (ca. 2.6 mg g-1 DW) in the presence of NaCl. On saline soil, foliar Na concentration was significantly reduced by Cr(III). Phosphorus translocation to leaves was reduced in the presence of Cr(III), while Fe accumulation was enhanced by treatment with NaCl alone. A real-time RT-qPCR analysis was conducted on genes encoding for sulfate, iron, and phosphate transporters, a phytochelatin, a metallothionein, glutathione synthetase, a dehydrin, Hsp70, and enzymes responsible for the biosynthesis of proline (P5CS), glycine betaine (BADH), tocopherols (TAT), and phenolic compounds (PAL). Cr(III), and especially Cr(III)+NaCl, affected transcript levels of most of the investigated genes, indicating that tolerance to Cr is associated with changes in phosphorus and sulfur allocation, and activation of stress-protective molecules. Moderately saline conditions, in most cases, enhanced this response, suggesting that the halophytism of quinoa could contribute to prime the plants to respond to chromium stress.


Assuntos
Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Cromo/toxicidade , Salinidade , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Chenopodium quinoa/genética , Cromo/farmacocinética , Expressão Gênica/efeitos dos fármacos , Íons/metabolismo , Ferro/metabolismo , Chumbo/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Prolina/biossíntese , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Poluentes do Solo/farmacocinética , Estresse Fisiológico , Enxofre/metabolismo , Tocoferóis/metabolismo
4.
Genes (Basel) ; 10(12)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888133

RESUMO

Quinoa (Chenopodium quinoa Willd.), a model halophytic crop species, was used to shed light on salt tolerance mechanisms at the transcriptomic level. An RNA-sequencing analysis of genotype R49 at an early vegetative stage was performed by Illumina paired-ends method comparing high salinity and control conditions in a time-course pot experiment. Genome-wide transcriptional salt-induced changes and expression profiling of relevant salt-responsive genes in plants treated or not with 300 mM NaCl were analyzed after 1 h and 5 days. We obtained up to 49 million pairs of short reads with an average length of 101 bp, identifying a total of 2416 differentially expressed genes (DEGs) based on the treatment and time of sampling. In salt-treated vs. control plants, the total number of up-regulated and down-regulated genes was 945 and 1471, respectively. The number of DEGs was higher at 5 days than at 1 h after salt treatment, as reflected in the number of transcription factors, which increased with time. We report a strong transcriptional reprogramming of genes involved in biological processes like oxidation-reduction, response to stress and response to abscisic acid (ABA), and cell wall organization. Transcript analyses by real-time RT- qPCR supported the RNA-seq results and shed light on the contribution of roots and shoots to the overall transcriptional response. In addition, it revealed a time-dependent response in the expression of the analyzed DEGs, including a quick (within 1 h) response for some genes, suggesting a "stress-anticipatory preparedness" in this highly salt-tolerant genotype.


Assuntos
Chenopodium quinoa/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , RNA de Plantas/metabolismo , RNA-Seq/métodos , Cloreto de Sódio/farmacologia , Ácido Abscísico/farmacologia , Chenopodium quinoa/metabolismo , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/química
5.
Ecotoxicol Environ Saf ; 133: 25-35, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27400061

RESUMO

Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.


Assuntos
Antioxidantes/análise , Chenopodium quinoa/efeitos dos fármacos , Cromo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/análise , Flavonoides/metabolismo , Peróxido de Hidrogênio/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Poliaminas/análise , Polifenóis/análise , Prolina/análise , Sementes/metabolismo , Tocoferóis/análise , Tirosina Transaminase/análise
6.
Front Plant Sci ; 7: 656, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242857

RESUMO

Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.

7.
Plant Physiol Biochem ; 101: 1-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26841266

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a highly salt-tolerant species subdivided into five ecotypes and exhibiting broad intra-specific differences in tolerance levels. In a greenhouse study, Chilean landraces belonging either to the salares (R49) or coastal lowlands (VI-1, Villarrica) ecotype with contrasting agro-ecological origins were investigated for their responses to high salinity. The effects of two levels of salinity, 100 (T1) and 300 (T2) mM NaCl, on plant growth and on some physiological parameters were measured. Leaf and root Na(+) accumulation differed among landraces. T2 reduced growth and seed yield in all landraces with maximum inhibition relative to controls in R49. Salinity negatively affected chlorophyll and total polyphenol content (TPC) in VI-1 and Villarrica but not R49. Germination on saline or control media of seeds harvested from plants treated or not with NaCl was sometimes different; the best performing landrace was R49 insofar as 45-65% of seeds germinated on 500 mM NaCl-containing medium. In all landraces, average seedling root length declined strongly with increasing NaCl concentration, but roots of R49 were significantly longer than those of VI-1 and Villarrica up to 300 mM NaCl. Salt caused increases in seed TPC relative to controls, but radical scavenging capacity was higher only in seeds from T2 plants of R49. Total SDS-extractable seed proteins were resolved into distinct bands (10-70 kDa) with some evident differences between landraces. Salt-induced changes in protein patterns were landrace-specific. The responses to salinity of the salares landrace are discussed in relation to its better adaptation to an extreme environment.


Assuntos
Chenopodium quinoa/crescimento & desenvolvimento , Ecossistema , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Raízes de Plantas/metabolismo , Salinidade , Chile , Cloreto de Sódio/metabolismo
8.
Plant J ; 75(4): 618-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23663106

RESUMO

Trees are capable of tremendous architectural plasticity, allowing them to maximize their light exposure under highly competitive environments. One key component of tree architecture is the branch angle, yet little is known about the molecular basis for the spatial patterning of branches in trees. Here, we report the identification of a candidate gene for the br mutation in Prunus persica (peach) associated with vertically oriented growth of branches, referred to as 'pillar' or 'broomy'. Ppa010082, annotated as hypothetical protein in the peach genome sequence, was identified as a candidate gene for br using a next generation sequence-based mapping approach. Sequence similarity searches identified rice TAC1 (tiller angle control 1) as a putative ortholog, and we thus named it PpeTAC1. In monocots, TAC1 is known to lead to less compact growth by increasing the tiller angle. In Arabidopsis, an attac1 mutant showed more vertical branch growth angles, suggesting that the gene functions universally to promote the horizontal growth of branches. TAC1 genes belong to a gene family (here named IGT for a shared conserved motif) found in all plant genomes, consisting of two clades: one containing TAC1-like genes; the other containing LAZY1, which contains an EAR motif, and promotes vertical shoot growth in Oryza sativa (rice) and Arabidopsis through influencing polar auxin transport. The data suggest that IGT genes are ancient, and play conserved roles in determining shoot growth angles in plants. Understanding how IGT genes modulate branch angles will provide insights into how different architectural growth habits evolved in terrestrial plants.


Assuntos
Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Prunus/genética , Arabidopsis/genética , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Dados de Sequência Molecular , Família Multigênica , Mutação , Especificidade de Órgãos , Oryza/genética , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Prunus/anatomia & histologia , Prunus/crescimento & desenvolvimento , Análise de Sequência de DNA , Árvores
9.
Plant Physiol Biochem ; 64: 11-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23337357

RESUMO

Peach (Prunus persica laevis L. Batsch) was chosen as a model to further clarify the physiological role of ABA during fruit ripening. To this aim, branches bearing one fruit at mid-S3, S3/S4 and S4 stages of fruit development and characterized by a different ripening index (I(AD)), as revealed by a non-destructive device called a DA-meter, were treated with ABA (0.02 mM) for 1 and 5 days. Exogenously applied ABA interfered with the progression of ripening leading to less ripe or riper fruit depending on the physiological stage. To better understand the molecular basis of ABA interference with ripening, the time-course changes in the expression of ethylene-, cell wall-, and auxin-related genes as well as other genes (NCED, PIP, LOX, AOS and SOT) was evaluated in the fruit mesocarp. Real-time PCR analyses revealed that in mid-S3 fruit transcript levels of ethylene biosynthesis and signaling (ACS1, ACO1, ETR2, ERF2), cell wall softening-related (PG, PMEI, EXP1, EXP2) and auxin biosynthesis, conjugation, transport and perception (TRPB, IGPS, Aux/IAA, GH3, PIN1 and TIR1) genes were substantially down-regulated on day 5 indicating a ripening delay. On the contrary, in more advanced stages (S3/S4 and S4) the same genes were early (day 1) up-regulated suggesting an acceleration of ripening. Transcript profiling of other ripening-related genes revealed changes that were in accord with a ripening delay (mid-S3) or acceleration (S3/S4 and S4). Thus, in peach fruit, ABA appears to modulate ripening through interference not only with ethylene and cell wall but also with auxin-related genes.


Assuntos
Ácido Abscísico/metabolismo , Parede Celular/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Prunus/metabolismo , Parede Celular/genética , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Expressão Gênica , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/genética , Prunus/genética , Prunus/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
10.
J Plant Physiol ; 169(18): 1858-65, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22884412

RESUMO

Peach (Prunus persica) was chosen as a model to further clarify the physiological role of jasmonates (JAs) during fruit ripening. To this aim, the effect of methyl jasmonate (MJ, 0.88 mM), applied at a late stage (S3) of fruit development under field conditions (in planta), on the time-course of fruit ripening over a 14-day period was evaluated. As revealed by a non-destructive device called a DA-meter, exogenously applied MJ impaired the progression of ripening leading to less ripe fruit at harvest. To better understand the molecular basis of MJ interference with ripening, the time-course changes in the expression of ethylene-, cell wall-, and auxin-related genes as well as other genes (LOX, AOS and bZIP) was evaluated in the fruit mesocarp. Real-time PCR analyses revealed that transcript levels of ethylene-related genes were strongly affected. In a first phase (days 2 and/or 7) of the MJ response, mRNAs of the ethylene biosynthetic genes ACO1, ACS1 and the receptor gene ETR2 were strongly but transiently down-regulated, and then returned to or above control levels in a second phase (days 11 and/or 14). Auxin biosynthetic, conjugating, transport and perception gene transcripts were also affected. While biosynthetic genes (TRPB and IGPS) were up-regulated, auxin-conjugating (GH3), perception (TIR1) and transport (PIN1) genes were transiently but strongly down-regulated in a first phase, but returned to control levels subsequently. Transcript levels of two JA-related genes (LOX, AOS) and a developmentally regulated transcription factor (bZIP) were also affected, suggesting a shift ahead of the ripening process. Thus, in peach fruit, the transient slowing down of ripening by exogenous MJ was associated with an interference not only with ethylene but also with auxin-related genes.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Etilenos/metabolismo , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Oxilipinas/farmacologia , Prunus/fisiologia , Parede Celular/metabolismo , Regulação para Baixo , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Prunus/efeitos dos fármacos , Prunus/genética , Prunus/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...