Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687734

RESUMO

In the last few decades, there has been increasing social awareness for environmental conservation, which is driving the development of composite materials based on natural fibers. These new materials have interesting properties that allow for their use in a variety of applications. This study deals with the development of composite materials based on unsaturated polyester resins reinforced with recycled mineral fibers, such as slate fibers obtained from slate production waste, which have similar properties to glass fiber. The mechanical properties of these composites have been determined by tensile and flexural/bending tests. The influence of various variables such as matrix composition (flexible polyester content) and the weight percentage of fiber added to mechanical properties were evaluated. The flexible/rigid polyester content varied from 0 to 40% and the fiber one from 0 to 30 wt%. Composites with ≥20 wt% of slate fiber reinforcement are shown to have tensile (35 MPa) and flexural (57 MPa) strengths that can compete with materials reinforced with artificial fibers.

2.
Inorg Chem ; 44(9): 3063-9, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15847410

RESUMO

Eleven new oxides, derived from yttrium barium copper oxide by replacing the square-planar copper [Cu-O4] of the basal plane of the triple perovskite-based structure with octahedral Cr(IV), have been prepared at high pressure and temperature. Their crystal structures have been determined, and their complex microstructure has been established by means of high-resolution electron microscopy and electron diffraction. The materials have a general formula of CrSr2RECu2O8 (RE = La, Pr, Nd, Eu, Gd, Tb, Dy, Y, Ho, Er, and Lu); they are tetragonal, show the symmetry of space group P4/mmm, and do not appear to be superconducting.

3.
J Am Chem Soc ; 126(39): 12517-27, 2004 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-15453785

RESUMO

The temperature dependence of the crystal structure and electronic properties of brownmillerite-like Ca(2.5)Sr(0.5)GaMn(2)O(8) has been studied by neutron powder diffraction and muSR spectroscopy. The results show that short-range 2D magnetic order begins to develop within the perovskite-like bilayers of MnO(6) octahedra approximately 50 K above the 3D Néel temperature of approximately 150 K. The bilayers show a structural response to the onset of magnetism throughout this temperature range whereas the GaO(4) layers that separate the bilayers only respond below the 3D ordering temperature. XANES spectroscopy shows that the sample contains Mn(3+) and Mn(4+) cations in a 1:1 ratio, and the behavior in the region of the Néel transition is interpreted as a local charge ordering. Electron diffraction and high-resolution electron microscopy have been used to show that the local microstructure is more complex than the average structure revealed by neutron diffraction, and that microdomains exist in which the GaO(4) tetrahedra show different orientations. It is argued that the bonding requirements of diamagnetic gallium control the electronic behavior within the perovskite-like bilayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...