Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 9(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652754

RESUMO

Voltametric sensors formed by the combination of a sulfur-substituted zinc phthalocyanine (ZnPcRS) and gold nanoparticles capped with tetraoctylammonium bromide (AuNPtOcBr) have been developed. The influence of the nature of the interaction between both components in the response towards catechol has been evaluated. Electrodes modified with a mixture of nanoparticles and phthalocyanine (AuNPtOcBr/ZnPcRS) show an increase in the intensity of the peak associated with the reduction of catechol. Electrodes modified with a covalent adduct-both component are linked through a thioether bond-(AuNPtOcBr-S-ZnPcR), show an increase in the intensity of the oxidation peak. Voltammograms registered at increasing scan rates show that charge transfer coefficients are different in both types of electrodes confirming that the kinetics of the electrochemical reaction is influenced by the nature of the interaction between both electrocatalytic materials. The limits of detection attained are 0.9 × 10-6 mol∙L-1 for the electrode modified with the mixture AuNPtOcBr/ZnPcRS and 1.3 × 10-7 mol∙L-1 for the electrode modified with the covalent adduct AuNPtOcBr-S-ZnPcR. These results indicate that the establishment of covalent bonds between nanoparticles and phthalocyanines can be a good strategy to obtain sensors with enhanced performance, improving the charge transfer rate and the detection limits of voltammetric sensors.

2.
Cell Microbiol ; 16(4): 548-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24245710

RESUMO

Aspergillus fumigatus can invade the lungs of immunocompromised individuals causing a life-threatening disease called invasive pulmonary aspergillosis (IPA). To grow in the lungs, A. fumigatus obtains from the host all nutrients, including zinc. In living tissues, however, most zinc is tightly bound to zinc-binding proteins. Moreover, during infection the bioavailability of zinc can be further decreased by calprotectin, an antimicrobial Zn/Mn-chelating protein that is released by neutrophils in abscesses. Nevertheless, A. fumigatus manages to uptake zinc from and grow within the lungs of susceptible individuals. Thus, in this study we investigated the role of the zrfA, zrfB and zrfC genes, encoding plasma membrane zinc transporters, in A. fumigatus virulence. We showed that zrfC is essential for virulence in the absence of zrfA and zrfB, which contribute to fungal pathogenesis to a lesser extent than zrfC and are dispensable for virulence in the presence of zrfC. The special ability of ZrfC to scavenge and uptake zinc efficiently from lungtissue depended on its N-terminus, which is absent in the ZrfA and ZrfB transporters. In addition, under Zn- and/or Mn-limiting conditions zrfC enables A. fumigatus to grow in the presence of calprotectin, which is detected in fungal abscesses of non-leucopenic animals. This study extends our knowledge about the pathobiology of A. fumigatus and suggests that fungal zinc uptake could be a promising target for new antifungals.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas de Transporte/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Manganês/metabolismo , Zinco/metabolismo , Aspergillus fumigatus/crescimento & desenvolvimento , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...