Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 16960-16967, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37410703

RESUMO

The resistance of an ordered 3D-Bi2Te3 nanowire nanonetwork was studied at low temperatures. Below 50 K the increase in resistance was found to be compatible with the Anderson model for localization, considering that conduction takes place in individual parallel channels across the whole sample. Angle-dependent magnetoresistance measurements showed a distinctive weak antilocalization characteristic with a double feature that we could associate with transport along two perpendicular directions, dictated by the spatial arrangement of the nanowires. The coherence length obtained from the Hikami-Larkin-Nagaoka model was about 700 nm across transversal nanowires, which corresponded to approximately 10 nanowire junctions. Along the individual nanowires, the coherence length was greatly reduced to about 100 nm. The observed localization effects could be the reason for the enhancement of the Seebeck coefficient observed in the 3D-Bi2Te3 nanowire nanonetwork compared to individual nanowires.

2.
Nanoscale Adv ; 4(15): 3194-3211, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132820

RESUMO

Scanning thermal microscopy (SThM) is a powerful technique for thermal characterization. However, one of the most challenging aspects of thermal characterization is obtaining quantitative information on thermal conductivity with nanoscale lateral resolution. We used this technique with the cross-point calibration method to obtain the thermal contact resistance, R c, and thermal exchange radius, b, using thermo-resistive Pd/Si3N4 probes. The cross-point curves correlate the dependence of R c and b with the sample's thermal conductivity. We implemented a 3ω-SThM method in which reference samples with known thermal conductivity were used in the calibration and validation process to guarantee optimal working conditions. We achieved values of R c = 0.94 × 106 ± 0.02 K W-1 and b = 2.41 × 10-7 ± 0.02 m for samples with a low thermal conductivity (between 0.19 and 1.48 W m-1 K-1). These results show a large improvement in spatial resolution over previously reported data for the Wollaston probes (where b ∼ 2.8 µm). Furthermore, the contact resistance with the Pd/Si3N4 is ∼20× larger than reported for a Wollaston wire probe (with 0.45 × 105 K W-1). These thermal parameters were used to determine the unknown thermal conductivity of thermoelectric films of Ag2Se, Ag2-x Se, Cu2Se (smooth vs. rough surface), and Bi2Te3, obtaining, in units of W m-1 K-1, the values of 0.63 ± 0.07, 0.69 ± 0.15, 0.79 ± 0.03, 0.82 ± 0.04, and 0.93 ± 0.12, respectively. To the best of our knowledge, this is the first time these microfabricated probes have been calibrated using the cross-point method to perform quantitative thermal analysis with nanoscale resolution. Moreover, this work shows high-resolution thermal images of the V 1ω and V 3ω signals, which can offer relevant information on the material's heat dissipation.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616063

RESUMO

The 1D nanowire arrays and 3D nanowire networks of topological insulators and metals have been fabricated by template-assisted deposition of Bi2Te3 and Ni inside anodic aluminum oxide (AAO) templates, respectively. Despite the different origins of the plasmon capabilities of the two materials, the results indicate that the optical response is determined by plasmon resonances, whose position depends on the nanowire interactions and material properties. Due to the thermoelectric properties of Bi2Te3 nanowires, these plasmon resonances could be used to develop new ways of enhancing thermal gradients and their associated thermoelectric power.

4.
Nanoscale ; 13(4): 2227-2265, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480949

RESUMO

Anodic porous alumina, -AAO- (also known as nanoporous alumina, nanohole alumina arrays, -NAA- or nanoporous anodized alumina platforms, -NAAP-) has opened new opportunities in a wide range of fields, and is used as an advanced photonic structure for applications in structural coloration and advanced optical biosensing based on the ordered nanoporous structure obtained and as a template to grow nanowires or nanotubes of different materials giving rise to metamaterials with tailored properties. Therefore, understanding the structure of nanoporous anodic alumina templates and knowing how they are fabricated provide a tool for the further design of structures based on them, such as 3D nanoporous structures developed recently. In this work, we review the latest developments related to nanoporous alumina, which is currently a very active field, to provide a solid and thorough reference for all interested experts, both in academia and industry, on these nanostructured and highly useful structures. We present an overview of theories on the formation of pores and self-ordering in alumina, paying special attention to those presented in recent years, and different nanostructures that have been developed recently. Therefore, a wide variety of architectures, ranging from ordered nanoporous structures to diameter changing pores, branched pores, and 3D nanostructures will be discussed. Next, some of the most relevant results using different nanostructured morphologies as templates for the growth of different materials with novel properties and reduced dimensionality in magnetism, thermoelectricity, etc. will be summarised, showing how these structures have influenced the state of the art in a wide variety of fields. Finally, a review on how these anodic aluminium membranes are used as platforms for different applications combined with optical techniques, together with principles behind these applications will be presented, in addition to a hint on the future applications of these versatile nanomaterials. In summary, this review is focused on the most recent developments, without neglecting the basis and older studies that have led the way to these findings. Thus, it gives an updated state-of-the-art review that should be useful not only for experts in the field, but also for non-specialists, helping them to gain a broad understanding of the importance of anodic porous alumina, and most probably, endow them with new ideas for its use in fields of interest or even developing the anodization technique.

5.
ACS Appl Energy Mater ; 4(12): 13556-13566, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35647490

RESUMO

3D interconnected nanowire scaffoldings are shown to increase the thermoelectric efficiency in comparison to similar diameter 1D nanowires and films grown under similar electrodeposition conditions. Bi2Te3 3D nanonetworks offer a reduction in thermal conductivity (κT) while preserving the high electrical conductivity of the films. The reduction in κT is modeled using the hydrodynamic heat transport equation, and it can be understood as a heat viscosity effect due to the 3D nanostructuration. In addition, the Seebeck coefficient is twice that of nanowires and films, and up to 50% higher than in a single crystal. This increase is interpreted as a nonequilibrium effect that the geometry of the structure induces on the distribution function of the phonons, producing an enhanced phonon drag. These thermoelectric metamaterials have higher performance and are fabricated with large areas by a cost-effective method, which makes them suitable for up-scale production.

6.
J Funct Biomater ; 10(1)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813437

RESUMO

This study investigated the impact of different calcium reagents on the morphology, composition, bioactivity and biocompatibility of two-component (CaO-SiO2) glasses produced by the Stöber process with respect to their potential application in guided tissue regeneration (GTR) membranes for periodontal repair. The properties of the binary glasses were compared with those of pure silica Stöber particles. The direct addition of calcium chloride (CC), calcium nitrate (CN), calcium methoxide (CM) or calcium ethoxide (CE) at 5 mol % with respect to tetraethyl orthosilicate in the reagent mixture gave rise to textured, micron-sized aggregates rather than monodispersed ~500 nm spheres obtained from the pure silica Stöber synthesis. The broadening of the Si-O-Si band at ~1100 cm-1 in the infrared spectra of the calcium-doped glasses indicated that the silicate network was depolymerised by the incorporation of Ca2+ ions and energy dispersive X-ray analysis revealed that, in all cases, the Ca:Si ratios were significantly lower than the nominal value of 0.05. The distribution of Ca2+ ions was also found to be highly inhomogeneous in the methoxide-derived glass. All samples released soluble silica species on exposure to simulated body fluid, although only calcium-doped glasses exhibited in vitro bioactivity via the formation of hydroxyapatite. The biocompatibilities of model chitosan-glass GTR membranes were assessed using human MG63 osteosarcoma cells and were found to be of the order: CN < pure silica ≈ CC << CM ≈ CE. Calcium nitrate is the most commonly reported precursor for the sol-gel synthesis of bioactive glasses; however, the incomplete removal of nitrate ions during washing compromised the cytocompatibility of the resulting glass. The superior bioactivity and biocompatibility of the alkoxide-derived glasses is attributed to their ease of dissolution and lack of residual toxic anions. Overall, calcium ethoxide was found to be the preferred precursor with respect to extent of calcium-incorporation, homogeneity, bioactivity and biocompatibility.

7.
Nanomaterials (Basel) ; 8(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783697

RESUMO

Self-standing Bi2Te3 networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi2Te3 interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi2Te3 networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.

8.
Sci Rep ; 6: 38595, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934930

RESUMO

Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m-1·K-1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...