Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172374, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615760

RESUMO

The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.


Assuntos
Monitoramento Ambiental , Estuários , Proliferação Nociva de Algas , Toxinas Marinhas , Fitoplâncton , Chile , Toxinas Marinhas/análise , Animais , Dinoflagellida
2.
Sci Total Environ ; 901: 165879, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37517716

RESUMO

Potential airborne human pathogens (PAHPs) may be a relevant component of the air microbiome in built environments. Despite that PAHPs can cause infections, particularly in immunosuppressed patients at medical centers, they are scarcely considered in standards of indoor air quality (IAQ) worldwide. Here, we reviewed the current information on microbial aerosols (bacteria, fungal and viruses) and PAHPs in different types of built environments (e.g., medical center, industrial and non-industrial), including the main factors involved in their dispersion, the methodologies used in their study and their associated biological risks. Our analysis identified the human occupancy and ventilation systems as the primary sources of dispersal of microbial aerosols indoors. We also observed temperature and relative humidity as relevant physicochemical factors regulating the dispersion and viability of some PAHPs. Our analysis revealed that some PAHPs can survive and coexist in different environments while other PAHPs are limited or specific for an environment. In relation to the methodologies (conventional or molecular) the nature of PAHPs and sampling type are pivotal. In this context, indoors air-borne viruses are the less studies because their small size, environmental lability, and absence of efficient sampling techniques and universal molecular markers for their study. Finally, it is noteworthy that PAHPs are not commonly considered and included in IAQ standards worldwide, and when they are included, the total abundance is the single parameter considered and biological risks is excluded. Therefore, we propose a revision, design and establishment of public health policies, regulations and IAQ standards, considering the interactions of diverse factors, such as nature of PAHPs, human occupancy and type of built environments where they develop.

3.
Arch Microbiol ; 204(2): 148, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061108

RESUMO

Temuco (Chile) is one of the most polluted cities in Chile and Latin America. Although the fine fraction of particulate matter (PM2.5) has been extensively studied and monitored due to its negative impact on public health, its microbiological components remain unknown. We explored, the airborne bacterial community in PM2.5 under good, moderate, alert, pre-emergency and emergency indices of air quality (AQIs) established by the Chilean government. Bacterial community relationship with environmental factors (PM2.5, PM10, carbon monoxide, among others), was also evaluated. Significant differences in PM2.5 bacterial community composition associated with AQIs were revealed, using 16S rRNA target sequences of denaturing gradient gel electrophoresis (DGGE) bands. Bacterial communities in PM2.5 were mainly clustered (80%) into emergency and pre-emergency samples. The dominant phylum was Proteobacteria and most abundant genus was Novosphingobium, traditionally related to opportunistic respiratory diseases. The main factors associated with community structure were PM2.5, PM10 and carbon monoxide concentrations. This study exposed that bacterial community composition in Temuco varies according to AQIs, with the occurrence of potential opportunistic bacteria on heavily polluted days.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Bactérias/genética , Chile , Cidades , Monitoramento Ambiental , Material Particulado/análise , RNA Ribossômico 16S/genética
4.
Environ Int ; 145: 106156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039877

RESUMO

Microbial entities (such bacteria, fungi, archaea and viruses) within outdoor aerosols have been scarcely studied compared with indoor aerosols and nonbiological components, and only during the last few decades have their studies increased. Bacteria represent an important part of the microbial abundance and diversity in a wide variety of rural and urban outdoor bioaerosols. Currently, airborne bacterial communities are mainly sampled in two aerosol size fractions (2.5 and 10 µm) and characterized by culture-dependent (plate-counting) and culture-independent (DNA sequencing) approaches. Studies have revealed a large diversity of bacteria in bioaerosols, highlighting Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as ubiquitous phyla. Seasonal variations in and dispersion of bacterial communities have also been observed between geographical locations as has their correlation with specific atmospheric factors. Several investigations have also suggested the relevance of airborne bacteria in the public health and agriculture sectors as well as remediation and atmospheric processes. However, although factors influencing airborne bacterial communities and standardized procedures for their assessment have recently been proposed, the use of bacterial taxa as microbial indicators of specific bioaerosol sources and seasonality have not been broadly explored. Thus, in this review, we summarize and discuss recent advances in the study of airborne bacterial communities in outdoor environments and the possible factors influencing their abundance, diversity, and seasonal variation. Furthermore, airborne bacterial activity and bioprospecting in different fields (e.g., the textile industry, the food industry, medicine, and bioremediation) are discussed. We expect that this review will reveal the relevance and influencing factors of airborne bacteria in outdoor environments as well as stimulate new investigations on the atmospheric microbiome, particularly in areas where air quality is a public concern.


Assuntos
Microbiologia do Ar , Microbiota , Aerossóis , Bactérias/genética , Fungos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...