Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38425478

RESUMO

The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities. We found a large diversity of photosynthetic and heterotrophic eukaryotes incorporating HPG into proteins, with dinoflagellates and diatoms showing the highest percentages of BONCAT-labelled cells (49 ± 25% and 52 ± 15%, respectively). Among them, pennate diatoms exhibited higher HPG incorporation in the afternoon than in the morning, whereas small (≤5 µm) photosynthetic eukaryotes and heterotrophic nanoeukaryotes showed the opposite pattern. Centric diatoms (e.g. Chaetoceros, Thalassiosira, and Lauderia spp.) dominated the eukaryotic HPG incorporation due to their high abundances and large sizes, accounting for up to 86% of the eukaryotic BONCAT signal and strongly correlating with bulk 3H-leucine uptake rates. When including prokaryotes, eukaryotes were estimated to account for 19-31% of the bulk BONCAT signal. Our results evidence a large complexity in the osmotrophic uptake of HPG, which varies over time within and across eukaryotic groups and highlights the potential of BONCAT to quantify osmotrophy and protein synthesis in complex eukaryotic communities.

2.
Sci Total Environ ; 903: 166104, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558065

RESUMO

Estuaries are among the most productive ecosystems in the world and are highly dynamic due to the interaction of freshwater and seawater, which results in strong spatial gradients in physico-chemical conditions. Bacterioplankton play a central role in these systems, driving the fluxes of carbon and energy, and being central for contaminant removal in human-impacted areas. Most studies on bacterioplankton dynamics have been carried out in temperate estuaries, and they show that salinity is a major factor driving bacterioplankton distribution. Tropical estuaries, although largely understudied, experience drastic variations in river discharge between the dry and the rainy seasons, influencing the spatial distribution of the salinity gradient and thus likely impacting bacterioplankton communities. Using Illumina sequencing of the 16S rRNA gene, here we studied bacterial communities from the Nicoya's Gulf (Costa Rica), a large tropical estuary characterized by high riverine discharge during the rainy season, to explore seasonal changes in the spatial distribution and connectivity of these communities along the Gulf. Our results show pronounced differences in bacterial diversity and community structure between seasons and zones within the estuary (the shallow upper Gulf, the middle zone and the lower zone, located in the marine end of the estuary). Bacterial communities from the different regions were more similar during the rainy season, suggesting a larger degree of microbial connectivity likely driven by the fast water circulation fueled by the riverine discharge. In the dry season, Enterobacteriales and Cyanobacteria dominated bacterial communities, whereas in the rainy season Alphaproteobacteria was the dominant group. These contrasting seasonal trends were consistent with the seasonal variations observed in bacterial assemblages during a year at a single station in the upper region of the Gulf. We conclude that the Gulf is highly dynamic in both the spatial and temporal scale and that bacterioplankton communities are strongly influenced by the riverine and tidal inputs during both seasons. This study sheds light on the sources of variability in the structure of bacterial communities in tropical estuarine systems, an understudied type of aquatic ecosystem, and sets the basis to design further comprehensive studies on their microbial diversity.

3.
Front Microbiol ; 14: 1078469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910225

RESUMO

Antarctic polynyas are highly productive open water areas surrounded by ice where extensive phytoplankton blooms occur, but little is known about how these surface blooms influence carbon fluxes and prokaryotic communities from deeper waters. By sequencing the 16S rRNA gene, we explored the vertical connectivity of the prokaryotic assemblages associated with particles of three different sizes in two polynyas with different surface productivity, and we linked it to the magnitude of the particle export fluxes measured using thorium-234 (234Th) as particle tracer. Between the sunlit and the mesopelagic layers (700 m depth), we observed compositional changes in the prokaryotic communities associated with the three size-fractions, which were mostly dominated by Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. Interestingly, the vertical differences between bacterial communities attached to the largest particles decreased with increasing 234Th export fluxes, indicating a more intense downward transport of surface prokaryotes in the most productive polynya. This was accompanied by a higher proportion of surface prokaryotic taxa detected in deep particle-attached microbial communities in the station with the highest 234Th export flux. Our results support recent studies evidencing links between surface productivity and deep prokaryotic communities and provide the first evidence of sinking particles acting as vectors of microbial diversity to depth in Antarctic polynyas, highlighting the direct influence of particle export in shaping the prokaryotic communities of mesopelagic waters.

4.
Mol Ecol ; 31(22): 5745-5764, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112071

RESUMO

Subterranean estuaries are biogeochemically active coastal sites resulting from the underground mixing of fresh aquifer groundwater and seawater. In these systems, microbial activity can largely transform the chemical elements that may reach the sea through submarine groundwater discharge (SGD), but little is known about the microorganisms thriving in these land-sea transition zones. We present the first spatially-resolved characterization of the bacterial assemblages along a coastal aquifer in the NW Mediterranean, considering the entire subsurface salinity gradient. Combining bulk heterotrophic activity measurements, flow cytometry, microscopy and 16S rRNA gene sequencing we find large variations in prokaryotic abundances, cell size, activity and diversity at both the horizontal and vertical scales that reflect the pronounced physicochemical gradients. The parts of the transect most influenced by freshwater were characterized by smaller cells and lower prokaryotic abundances and heterotrophic production, but some activity hotspots were found at deep low-oxygen saline groundwater sites enriched in nitrite and ammonium. Diverse, heterogeneous and highly endemic communities dominated by Proteobacteria, Patescibacteria, Desulfobacterota and Bacteroidota were observed throughout the aquifer, pointing to clearly differentiated prokaryotic niches across these transition zones and little microbial connectivity between groundwater and Mediterranean seawater habitats. Finally, experimental manipulations unveiled large increases in community heterotrophic activity driven by fast growth of some rare and site-specific groundwater Proteobacteria. Our results indicate that prokaryotic communities within subterranean estuaries are highly heterogeneous in terms of biomass, activity and diversity, suggesting that their role in transforming nutrients will also vary spatially within these terrestrial-marine transition zones.


Assuntos
Estuários , Água Subterrânea , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Água Subterrânea/microbiologia , Bactérias/genética , Monitoramento Ambiental
5.
Environ Microbiol ; 24(5): 2222-2238, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35084095

RESUMO

The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments but their global diversity and biogeography remain poorly characterized. Here, we analyzed AAP communities across 113 globally-distributed surface ocean stations sampled during the Malaspina Expedition in the tropical and subtropical ocean. By means of amplicon sequencing of the pufM gene, a genetic marker for this functional group, we show that AAP communities along the surface ocean were mainly composed of members of the Halieaceae (Gammaproteobacteria), which were adapted to a large range of environmental conditions, and of different clades of the Alphaproteobacteria, which seemed to dominate under particular circumstances, such as in the oligotrophic gyres. AAP taxa were spatially structured within each of the studied oceans, with communities from adjacent stations sharing more taxonomic similarities. AAP communities were composed of a large pool of rare members and several habitat specialists. When compared to the surface ocean prokaryotic and picoeukaryotic communities, it appears that AAP communities display an idiosyncratic global biogeographical pattern, dominated by selection processes and less influenced by dispersal limitation. Our study contributes to the understanding of how AAP communities are distributed in the horizontal dimension and the mechanisms underlying their distribution across the global surface ocean.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Bactérias Aeróbias/genética , Oceanos e Mares , Filogenia , Água do Mar/microbiologia
6.
Nat Microbiol ; 6(12): 1561-1574, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34782724

RESUMO

The role of the Arctic Ocean ecosystem in climate regulation may depend on the responses of marine microorganisms to environmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs catalogue comprising 526 species. A total of 441 MAGs belonged to species that have not previously been reported and 299 genomes showed an exclusively polar distribution. Most Arctic MAGs have large genomes and the potential for fast generation times, both of which may enable adaptation to a copiotrophic lifestyle in nutrient-rich waters. We identified 38 habitat generalists and 111 specialists in the Arctic Ocean. We also found a general prevalence of 14 mixotrophs, while chemolithoautotrophs were mostly present in the mesopelagic layer during spring and autumn. We revealed 62 MAGs classified as key Arctic species, found only in the Arctic Ocean, showing the highest gene expression values and predicted to have habitat-specific traits. The Artic MAGs catalogue will inform our understanding of polar microorganisms that drive global biogeochemical cycles.


Assuntos
Archaea/genética , Bactérias/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/isolamento & purificação , Regiões Árticas , Bactérias/classificação , Bactérias/isolamento & purificação , Ecossistema , Genoma Arqueal , Genoma Bacteriano , Metagenoma , Filogenia
7.
FEMS Microbiol Rev ; 45(5)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33538813

RESUMO

Despite the relevance of submarine groundwater discharge (SGD) for ocean biogeochemistry, the microbial dimension of SGD remains poorly understood. SGD can influence marine microbial communities through supplying chemical compounds and microorganisms, and in turn, microbes at the land-ocean transition zone determine the chemistry of the groundwater reaching the ocean. However, compared with inland groundwater, little is known about microbial communities in coastal aquifers. Here, we review the state of the art of the microbial dimension of SGD, with emphasis on prokaryotes, and identify current challenges and future directions. Main challenges include improving the diversity description of groundwater microbiota, characterized by ultrasmall, inactive and novel taxa, and by high ratios of sediment-attached versus free-living cells. Studies should explore microbial dynamics and their role in chemical cycles in coastal aquifers, the bidirectional dispersal of groundwater and seawater microorganisms, and marine bacterioplankton responses to SGD. This will require not only combining sequencing methods, visualization and linking taxonomy to activity but also considering the entire groundwater-marine continuum. Interactions between traditionally independent disciplines (e.g. hydrogeology, microbial ecology) are needed to frame the study of terrestrial and aquatic microorganisms beyond the limits of their presumed habitats, and to foster our understanding of SGD processes and their influence in coastal biogeochemical cycles.


Assuntos
Água Subterrânea , Microbiota , Monitoramento Ambiental , Água do Mar
8.
Front Microbiol ; 11: 1645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760385

RESUMO

Microbes associated with sinking marine particles play key roles in carbon sequestration in the ocean. The sampling of particle-attached microorganisms is often done with sediment traps or by filtration of water collected with oceanographic bottles, both involving a certain time lapse between collection and processing of samples that may result in changes in particle-attached microbial communities. Conversely, in situ water filtration through submersible pumps allows a faster storage of sampled particles, but it has rarely been used to study the associated microbial communities and has never been compared to other particle-sampling methods in terms of the recovery of particle microbial diversity. Here we compared the prokaryotic communities attached to small (1-53 µm) and large (>53 µm) particles collected from the mesopelagic zone (100-300 m) of two Antarctic polynyas using in situ pumps (ISP) and oceanographic bottles (BTL). Each sampling method retrieved largely different particle-attached communities, suggesting that they capture different kinds of particles. These device-driven differences were greater for large particles than for small particles. Overall, the ISP recovered 1.5- to 3-fold more particle-attached bacterial taxa than the BTL, and different taxonomic groups were preferentially recovered by each method. In particular, typical particle-attached groups such as Planctomycetes and Deltaproteobacteria recovered with ISP were nearly absent from BTL samples. Our results suggest that the method used to sample marine particles has a strong influence in our view of their associated microbial communities.

9.
Sci Total Environ ; 748: 141374, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32823225

RESUMO

Methane-oxidizing bacteria (MOB) present in the water column mitigate methane (CH4) emissions from hydropower complexes to the atmosphere. By creating a discontinuity in rivers, dams cause large environmental variations, including in CH4 and oxygen concentrations, between upstream, reservoir, and downstream segments. Although highest freshwater methanotrophic activity is often detected at low oxygen concentrations, CH4 oxidation in well-oxygenated downstream rivers below dams has also been reported. Here we combined DNA and RNA high-throughput sequencing with microscopic enumeration (by CARD-FISH) and biogeochemical data to investigate the abundance, composition, and potential activity of MOB taxa from upstream to downstream waters in the tropical hydropower complex Batang Ai (Malaysia). High relative abundance of MOB (up to 61% in 16S rRNA sequences and 19% in cell counts) and enrichment of stable isotopic signatures of CH4 (up to 0‰) were detected in the hypoxic hypolimnion of the reservoir and in the outflowing downstream river. MOB community shifts along the river-reservoir system reflected environmental sorting of taxa and an interrupted hydrologic connectivity in which downstream MOB communities resembled reservoir's hypolimnetic communities but differed from upstream and surface reservoir communities. In downstream waters, CH4 oxidation was accompanied by fast cell growth of particular MOB taxa. Our results suggest that rapid shifts in active MOB communities allow the mitigation of CH4 emissions from different zones of hydropower complexes, including in quickly re-oxygenated rivers downstream of dams.


Assuntos
Metano , Methylococcaceae , Malásia , Metano/análise , Methylococcaceae/genética , Oxirredução , RNA Ribossômico 16S/genética , Rios
10.
Front Microbiol ; 11: 918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582044

RESUMO

Prokaryotes play a fundamental role in decomposing organic matter in the ocean, but little is known about how microbial metabolic capabilities vary at the global ocean scale and what are the drivers causing this variation. We aimed at obtaining the first global exploration of the functional capabilities of prokaryotes in the ocean, with emphasis on the under-sampled meso- and bathypelagic layers. We explored the potential utilization of 95 carbon sources with Biolog GN2 plates® in 441 prokaryotic communities sampled from surface to bathypelagic waters (down to 4,000 m) at 111 stations distributed across the tropical and subtropical Atlantic, Indian, and Pacific oceans. The resulting metabolic profiles were compared with biological and physico-chemical properties such as fluorescent dissolved organic matter (DOM) or temperature. The relative use of the individual substrates was remarkably consistent across oceanic regions and layers, and only the Equatorial Pacific Ocean showed a different metabolic structure. When grouping substrates by categories, we observed some vertical variations, such as an increased relative utilization of polymers in bathypelagic layers or a higher relative use of P-compounds or amino acids in the surface ocean. The increased relative use of polymers with depth, together with the increases in humic DOM, suggest that deep ocean communities have the capability to process complex DOM. Overall, the main identified driver of the metabolic structure of ocean prokaryotic communities was temperature. Our results represent the first global depiction of the potential use of a variety of carbon sources by prokaryotic communities across the tropical and the subtropical ocean and show that acetic acid clearly emerges as one of the most widely potentially used carbon sources in the ocean.

11.
Microbiome ; 8(1): 55, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312331

RESUMO

BACKGROUND: The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans. RESULTS: We found that the two main components of the tropical and subtropical surface-ocean microbiota, prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure and response to selection. Other measured abiotic variables seemed to have limited selective effects on community structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts. CONCLUSIONS: The differential action of ecological mechanisms seems to cause contrasting biogeography, in the tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to understand its current and future configuration, which is especially relevant in a context of global change, where the reaction of surface ocean plankton to temperature increase is still unclear. Video Abstract.


Assuntos
Microbiota , Oceanos e Mares , Plâncton/classificação , Microbiologia da Água , Archaea/classificação , Bactérias/classificação , Eucariotos/classificação , Filogeografia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise Espacial , Temperatura
12.
Mol Ecol ; 29(10): 1820-1838, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323882

RESUMO

Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep-sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid-like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200-1,000 m) communities, suggesting a direct connectivity through fast-sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.


Assuntos
Plâncton , Água do Mar , Oceano Atlântico , Cilióforos , Dinoflagellida , Oceano Índico , Oceano Pacífico , Plâncton/genética , RNA Ribossômico 16S/genética
13.
Mol Ecol ; 29(7): 1267-1283, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32147876

RESUMO

Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in-depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.


Assuntos
Bactérias/classificação , Cadeia Alimentar , Lagos/microbiologia , Luz , Processos Fototróficos , Filogenia , Bactérias/efeitos da radiação , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Quebeque
14.
Environ Microbiol ; 22(2): 738-751, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769176

RESUMO

Lake methane (CH4 ) emissions are largely controlled by aerobic methane-oxidizing bacteria (MOB) which mostly belong to the classes Alpha- and Gammaproteobacteria (Alpha- and Gamma-MOB). Despite the known metabolic and ecological differences between the two MOB groups, their main environmental drivers and their relative contribution to CH4 oxidation rates across lakes remain unknown. Here, we quantified the two MOB groups through CARD-FISH along the water column of six temperate lakes and during incubations in which we measured ambient CH4 oxidation rates. We found a clear niche separation of Alpha- and Gamma-MOB across lake water columns, which is mostly driven by oxygen concentration. Gamma-MOB appears to dominate methanotrophy throughout the water column, but Alpha-MOB may also be an important player particularly in well-oxygenated bottom waters. The inclusion of Gamma-MOB cell abundance improved environmental models of CH4 oxidation rate, explaining part of the variation that could not be explained by environmental factors alone. Altogether, our results show that MOB composition is linked to CH4 oxidation rates in lakes and that information on the MOB community can help predict CH4 oxidation rates and thus emissions from lakes.


Assuntos
Lagos/microbiologia , Metano/metabolismo , Methylococcaceae/metabolismo , Oxirredução , Oxigênio/metabolismo , Água/metabolismo
15.
Mol Ecol ; 28(18): 4181-4196, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479544

RESUMO

Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here, we used high-throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic community composition and the environmental factors that influence their distribution and relative abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal landscape. Within one region, soil and soil water samples were additionally taken from the surrounding watersheds in order to cover the full terrestrial-aquatic continuum. The composition of methanotrophic communities across the boreal landscape showed only a modest degree of regional differentiation but a strong structuring along the hydrologic continuum from soil to lake communities, regardless of regions. This pattern along the hydrologic continuum was mostly explained by a clear niche differentiation between type I and type II methanotrophs along environmental gradients in pH, and methane concentrations. Our results suggest very different roles of type I and type II methanotrophs within inland waters, the latter likely having a terrestrial source and reflecting passive transport and dilution along the aquatic networks, but this is an unresolved issue that requires further investigation.


Assuntos
Bactérias/classificação , Meio Ambiente , Metano/metabolismo , Filogeografia , Microbiologia da Água , Sequência de Bases , Geografia , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Filogenia , Análise de Componente Principal , Quebeque , RNA Ribossômico 16S/genética , Temperatura
16.
Front Microbiol ; 10: 760, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024513

RESUMO

Experiments with bacteria in culture have shown that they often display "feast and famine" strategies that allow them to respond with fast growth upon pulses in resource availability, and enter a growth-arrest state when resources are limiting. Although feast responses have been observed in natural communities upon enrichment, it is unknown whether this blooming ability is maintained after long periods of starvation, particularly in systems that are energy limited like the bathypelagic ocean. Here we combined bulk and single-cell activity measurements with 16S rRNA gene amplicon sequencing to explore the response of a bathypelagic community, that had been starved for 1.6 years, to a sudden organic carbon supply. We observed a dramatic change in activity within 30 h, with leucine incorporation rates increasing over two orders of magnitude and the number of translationally active cells (mostly Gammaproteobacteria) increasing 4-fold. The feast response was driven by a single operational taxonomic unit (OTU) affiliated with the Marinobacter genus, which had remained rare during 7 months of starvation. Our work suggests that bathypelagic communities harbor a seed bank of highly persistent and resourceful "feast and famine" strategists that might disproportionally contribute to carbon fluxes through fast responses to occasional pulses of organic matter.

17.
Mol Ecol ; 28(8): 1930-1945, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30663830

RESUMO

Microbial taxa range from being ubiquitous and abundant across space to extremely rare and endemic, depending on their ecophysiology and on different processes acting locally or regionally. However, little is known about how cosmopolitan or rare taxa combine to constitute communities and whether environmental variations promote changes in their relative abundances. Here we identified the Spatial Abundance Distribution (SpAD) of individual prokaryotic taxa (16S rDNA-defined Operational Taxonomic Units, OTUs) across 108 globally-distributed surface ocean stations. We grouped taxa based on their SpAD shape ("normal-like"- abundant and ubiquitous; "logistic"- globally rare, present in few sites; and "bimodal"- abundant only in certain oceanic regions), and investigated how the abundance of these three categories relates to environmental gradients. Most surface assemblages were numerically dominated by a few cosmopolitan "normal-like" OTUs, yet there was a gradual shift towards assemblages dominated by "logistic" taxa in specific areas with productivity and temperature differing the most from the average conditions in the sampled stations. When we performed the SpAD categorization including additional habitats (deeper layers and particles of varying sizes), the SpAD of many OTUs changed towards fewer "normal-like" shapes, and OTUs categorized as globally rare in the surface ocean became abundant. This suggests that understanding the mechanisms behind microbial rarity and dominance requires expanding the context of study beyond local communities and single habitats. We show that marine bacterial communities comprise taxa displaying a continuum of SpADs, and that variations in their abundances can be linked to habitat transitions or barriers that delimit the distribution of community members.


Assuntos
Bactérias/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias/classificação , Biodiversidade , Ecossistema , Oceanos e Mares , Temperatura
18.
Proc Natl Acad Sci U S A ; 115(29): E6799-E6807, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967136

RESUMO

The sinking of organic particles formed in the photic layer is a main vector of carbon export into the deep ocean. Although sinking particles are heavily colonized by microbes, so far it has not been explored whether this process plays a role in transferring prokaryotic diversity from surface to deep oceanic layers. Using Illumina sequencing of the 16S rRNA gene, we explore here the vertical connectivity of the ocean microbiome by characterizing marine prokaryotic communities associated with five different size fractions and examining their compositional variability from surface down to 4,000 m across eight stations sampled in the Atlantic, Pacific, and Indian Oceans during the Malaspina 2010 Expedition. Our results show that the most abundant prokaryotes in the deep ocean are also present in surface waters. This vertical community connectivity seems to occur predominantly through the largest particles because communities in the largest size fractions showed the highest taxonomic similarity throughout the water column, whereas free-living communities were more isolated vertically. Our results further suggest that particle colonization processes occurring in surface waters determine to some extent the composition and biogeography of bathypelagic communities. Overall, we postulate that sinking particles function as vectors that inoculate viable particle-attached surface microbes into the deep-sea realm, determining to a considerable extent the structure, functioning, and biogeography of deep ocean communities.


Assuntos
Microbiota/fisiologia , Modelos Biológicos , Microbiologia da Água , Oceanos e Mares
19.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912326

RESUMO

Freshwater bacterioplankton communities are influenced by the inputs of material and bacteria from the surrounding landscape, yet few studies have investigated how different terrestrial inputs affect bacterioplankton. We examined whether the addition of soils collected under various tree species combinations differentially influences lake bacterial communities. Lake water was incubated for 6 days following addition of five different soils. We assessed the taxonomic composition (16S rRNA gene sequencing) and metabolic activity (Biolog Ecoplates) of lake bacteria with and without soil addition, and compared these to initial soil communities. Soil bacterial assemblages showed a strong influence of tree composition, but such community differences were not reflected in the structure of lake communities that developed during the experiment. Bacterial taxa showing the largest abundance increases during incubation were initially present in both lake water and across most soils, and were related to Cytophagales, Burkholderiales and Rhizobiales. No clear metabolic profiles based on inoculum source were found, yet soil-amended communities used 60% more substrate than non-inoculated communities. Overall, we show that terrestrial inputs influence aquatic communities by stimulating the growth and activity of certain ubiquitous taxa distributed across the terrestrial-aquatic continuum, yet different forest soils did not cause predictable changes in lake bacterioplankton assemblages.


Assuntos
Bacteroidetes/classificação , Burkholderiales/classificação , Lagos/microbiologia , Plâncton/microbiologia , Rhizobiaceae/classificação , Microbiologia do Solo , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Burkholderiales/genética , Burkholderiales/isolamento & purificação , Florestas , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Solo/química , Árvores/genética , Árvores/microbiologia
20.
ISME J ; 11(9): 2012-2021, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28585940

RESUMO

Seed banks are believed to contribute to compositional changes within and across microbial assemblages, but the application of this concept to natural communities remains challenging. Here we describe the core seed bank of a bacterial metacommunity from a boreal watershed, using the spatial distribution of bacterial operational taxonomic units (OTUs) across 223 heterogeneous terrestrial, aquatic and phyllosphere bacterial assemblages. Taxa were considered potential seeds if they transitioned from rare to abundant somewhere within the metacommunity and if they were ubiquitous and able to persist under unfavorable conditions, the latter assessed by checking their presence in three deeply sequenced samples (one soil, one river and one lake, 2.2-3 million reads per sample). We show that only a small fraction (13%) of all detected OTUs constitute a metacommunity seed bank that is shared between all terrestrial and aquatic communities, but not by phyllosphere assemblages, which seem to recruit from a different taxa pool. Our results suggest directional recruitment driven by the flow of water in the landscape, since most aquatic sequences were associated to OTUs found in a single deeply-sequenced soil sample, but only 45% of terrestrial sequences belonged to OTUs found in the two deeply-sequenced aquatic communities. Finally, we hypothesize that extreme rarity, and its interplay with water residence time and growth rates, may further constrain the size of the potential seed bank.


Assuntos
Bactérias/isolamento & purificação , Banco de Sementes , Sementes/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , Lagos/microbiologia , Filogenia , Rios/microbiologia , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...