Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 915184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845633

RESUMO

Seed longevity is modulated by multiple genetic factors in Arabidopsis thaliana. A previous genome-wide association study using the Elevated Partial Pressure of Oxygen (EPPO) aging assay pinpointed a genetic locus associated with this trait. Reverse genetics identified the transcription factor DOF4.1 as a novel seed longevity factor. dof4.1 loss-of-function plants generate seeds exhibiting higher germination after accelerated aging assays. DOF4.1 is expressed during seed development and RNAseq data show several putative factors that could contribute to the dof4.1 seed longevity phenotype. dof4.1 has reduced seed permeability and a higher levels of seed storage proteins mRNAs (cruciferins and napins) in developing seeds, as compared to wild-type seeds. It has been reported that mutant lines defective in cruciferins or napins present reduced seed longevity. The improved longevity of dof4.1 is totally lost in the quadruple mutant dof4.1 cra crb crc, but not in a dof4.1 line depleted of napins, suggesting a prominent role for cruciferins in this process. Moreover, a negative regulation of DOF4.1 expression by the transcription factor DOF1.8 is suggested by co-inoculation assays in Nicotiana benthamiana. Indeed, DOF1.8 expression anticorrelates with that of DOF4.1 during seed development. In summary, modulation of DOF4.1 levels during seed development contributes to regulate seed longevity.

2.
Plant Cell Environ ; 45(9): 2708-2728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35672914

RESUMO

Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Germinação/genética , Fenótipo , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...