Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Immunol ; 14: 1223539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680635

RESUMO

Background: Numerous lines of evidence confirm that decidual stromal cells (DSCs) play a key role in maternal-fetal immune tolerance. Under the influence of progesterone and other hormones, the DSCs go through a process of differentiation (decidualization) during normal pregnancy. In mice, DSCs inhibit the expression of chemokines that attract abortigenic Th1 and Tc cells to the decidua. We have studied this phenomenon in humans. Methods: We established human DSC lines and decidualized these cells in vitro with progesterone and cAMP. We determined the expression of the chemokines CXCL9, CXCL10 and CXCL11, whose receptor CXCR3 is expressed by Th1 and Tc cells, in undifferentiated DSCs and decidualized DSCs by qRT-PCR. Activated CD3+CXCR3+ cells, including CD4+ Th1 cells and CD8+ Tc cells, were induced in vitro. The migration capacity of these activated lymphocytes was investigated in Transwell chambers with conditioned media from undifferentiated and decidualized DSCs. Results: We demonstrated that CXCL9 was not expressed by DSCs, whereas the expression of CXCL10 and CXCL11 was inhibited in decidualized cells. Conditioned media from decidualized cells significantly inhibited the migration of Th1 and Tc cells. We found that decidualized cells secrete factors of MW less than 6000-8000 Da, which actively inhibit the chemotaxis of these lymphocytes. Discussion: These results confirm in humans that decidualization of DSCs inhibits the expression by these cells of chemokines that attract Th1 and Tc cells and induces the secretion by DSCs of factors that inhibit the chemotaxis of these lymphocytes, thus preventing the arrival of abortigenic T cells in the decidua.


Assuntos
Quimiotaxia , Progesterona , Feminino , Gravidez , Humanos , Animais , Camundongos , Meios de Cultivo Condicionados , Feto , Linfócitos T CD8-Positivos
2.
Reprod Biomed Online ; 46(3): 460-469, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586747

RESUMO

RESEARCH QUESTION: Are the alterations observed in the endometriotic cells, such as progesterone resistance, already present in the eutopic endometrium or acquired in the ectopic location? DESIGN: The response to decidualization with progesterone and cyclic AMP for up to 28 days was compared in different endometrial stromal cell (EnSC) lines established from samples of endometriomas (eEnSC), eutopic endometrium from women with endometriosis (eBEnSC), endometrial tissue from healthy women (BEnSC) and menstrual blood from healthy donors (mEnSC). RESULTS: Usual features of decidualized cells, such as changes in cell morphology and expression of prolactin, were similarly observed in the three types of eutopic EnSC studied, but not in the ectopic cells upon decidualization. Among the phenotypic markers analysed, CD105 was down-regulated under decidualization in all cell types (mEnSC, P = 0.005; BEnSC, P = 0.029; eBEnSC, P = 0.022) except eEnSC. mEnSC and BEnSC underwent apoptosis during decidualization, whereas eBEnSC and eEnSC were resistant to the induction of cell death. Lastly, migration studies revealed that mEnSC secreted undetermined factors during decidualization that inhibited cell motility, whereas eEnSC showed a significantly lower ability to produce those migration-regulating factors (P < 0.0001, P  < 0.001 and P = 0.0013 for the migration of mEnSC at 24, 48 and 72 h, respectively; P  < 0.0001 for the migration of eEnSC at all times studied). CONCLUSIONS: This study provides novel insights into the differences between endometriotic and eutopic endometrial cells and reinforces the idea that the microenvironment in the ectopic location plays additional roles in the acquisition of the alterations that characterize the cells of the endometriotic foci.


Assuntos
Endometriose , Doenças Uterinas , Humanos , Feminino , Endometriose/metabolismo , Endométrio/metabolismo , Progesterona/metabolismo , Células Estromais/metabolismo
3.
Biol Reprod ; 107(5): 1166-1176, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35947987

RESUMO

Human endometrial and decidual stromal cells are the same cells in different environments (nonpregnancy and pregnancy, respectively). Although some authors consider decidual stromal cells to arise solely from the differentiation of endometrial stromal cells, this is a debatable issue given that decidualization processes do not end with the formation of the decidua, as shown by the presence of stromal cells from both the endometrium and decidua in both undifferentiated (nondecidualized) and decidualized states. Furthermore, recent functional and transcriptomic results have shown that there are differences in the decidualization process of endometrial and decidual stromal cells, with the latter having a greater decidualization capacity than the former. These differences suggest that in the terminology and study of their characteristics, endometrial and decidual stromal cells should be clearly distinguished, as should their undifferentiated or decidualized status. There is, however, considerable confusion in the designation and identification of uterine stromal cells. This confusion may impede a judicious understanding of the functional processes in normal and pathological situations. In this article, we analyze the different terms used in the literature for different types of uterine stromal cells, and propose that a combination of differentiation status (undifferentiated, decidualized) and localization (endometrium, decidua) criteria should be used to arrive at a set of accurate, unambiguous terms. The cell identity of uterine stromal cells is also a debatable issue: phenotypic, functional, and transcriptomic studies in recent decades have related these cells to different established cells. We discuss the relevance of these associations in normal and pathological situations.


Assuntos
Decídua , Endométrio , Gravidez , Feminino , Humanos , Decídua/fisiologia , Células Estromais , Diferenciação Celular , Células Cultivadas
4.
Front Immunol ; 13: 1094644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36969980

RESUMO

Background: Approximately 13.8% and 6.1% of coronavirus disease 2019 (COVID-19) patients require hospitalization and sometimes intensive care unit (ICU) admission, respectively. There is no biomarker to predict which of these patients will develop an aggressive stage that we could improve their quality of life and healthcare management. Our main goal is to include new markers for the classification of COVID-19 patients. Methods: Two tubes of peripheral blood were collected from a total of 66 (n = 34 mild and n = 32 severe) samples (mean age 52 years). Cytometry analysis was performed using a 15-parameter panel included in the Maxpar® Human Monocyte/Macrophage Phenotyping Panel Kit. Cytometry by time-of-flight mass spectrometry (CyTOF) panel was performed in combination with genetic analysis using TaqMan® probes for ACE2 (rs2285666), MX1 (rs469390), and TMPRSS2 (rs2070788) variants. GemStone™ and OMIQ software were used for cytometry analysis. Results: The frequency of CD163+/CD206- population of transitional monocytes (T-Mo) was decreased in the mild group compared to that of the severe one, while T-Mo CD163-/CD206- were increased in the mild group compared to that of the severe one. In addition, we also found differences in CD11b expression in CD14dim monocytes in the severe group, with decreased levels in the female group (p = 0.0412). When comparing mild and severe disease, we also found that CD45- [p = 0.014; odds ratio (OR) = 0.286, 95% CI 0.104-0.787] and CD14dim/CD33+ (p = 0.014; OR = 0.286, 95% CI 0.104-0.787) monocytes were the best options as biomarkers to discriminate between these patient groups. CD33 was also indicated as a good biomarker for patient stratification by the analysis of GemStone™ software. Among genetic markers, we found that G carriers of TMPRSS2 (rs2070788) have an increased risk (p = 0.02; OR = 3.37, 95% CI 1.18-9.60) of severe COVID-19 compared to those with A/A genotype. This strength is further increased when combined with CD45-, T-Mo CD163+/CD206-, and C14dim/CD33+. Conclusions: Here, we report the interesting role of TMPRSS2, CD45-, CD163/CD206, and CD33 in COVID-19 aggressiveness. This strength is reinforced for aggressiveness biomarkers when TMPRSS2 and CD45-, TMPRSS2 and CD163/CD206, and TMPRSS2 and CD14dim/CD33+ are combined.


Assuntos
COVID-19 , Qualidade de Vida , Humanos , Feminino , Pessoa de Meia-Idade , Antígenos CD/metabolismo , Receptores de Superfície Celular/metabolismo , Biomarcadores , Serina Endopeptidases/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico
5.
J Reprod Immunol ; 145: 103326, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965695

RESUMO

Decidual stromal cells (DSCs) are the most abundant cellular component of human decidua and play a central role in maternal-fetal immune tolerance. Antigen phenotyping and functional studies recently confirmed the relationship of DSCs with mesenchymal stem/stromal cells (MSCs) and pericytes, the latter two cell types being closely related or identical. The present study investigated the effect of decidualization, a process of cell differentiation driven by progesterone (P4) and other pregnancy hormones, on the MSC/pericyte characteristics of DSCs. To this end we isolated undifferentiated DSC (preDSC) lines that were decidualized in vitro (dDSC) by the effect of P4 and cAMP. Using flow cytometry, we found significant downmodulation of the expression of the MSC/pericyte markers α-smooth muscle actin, nestin, CD140b, CD146 and SUSD2 in dDSCs. The dDSCs did not differ, compared to preDSCs, in the expression of angiogenic factors (characteristic of pericytes) HGF, FGF2, ANGPT1 or VEGF according to RT-PCR results, but had significantly increased PGF expression. In migration assays, preDSC-conditioned media had a chemotactic effect on the THP-1 monocytic line (characteristic of pericytes), and this effect was significantly greater in dDSC-conditioned media. Media conditioned with dDSC, but not with preDSC, induced apoptosis in 4 out of 6 different tumor cell lines (characteristic of MSCs) according to propidium iodide staining and flow cytometry results. Our findings show that decidualization induces phenotypic and functional changes in the MSC/pericyte properties of DSCs that may have a role in the normal development of pregnancy.


Assuntos
Decídua/crescimento & desenvolvimento , Histocompatibilidade Materno-Fetal , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Neoplasias/terapia , Adulto , Antígenos/metabolismo , Diferenciação Celular/imunologia , Fatores Quimiotáticos/metabolismo , Quimiotaxia/imunologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Decídua/citologia , Decídua/imunologia , Feminino , Voluntários Saudáveis , Humanos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/imunologia , Pericitos/imunologia , Pericitos/metabolismo , Gravidez , Células THP-1 , Adulto Jovem
6.
Stem Cell Rev Rep ; 17(4): 1174-1193, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411206

RESUMO

Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis. Graphical Abstract.


Assuntos
Endometriose , Epigênese Genética , Estrogênios , Células-Tronco Mesenquimais/citologia , Progesterona , Células Estromais/citologia , Adulto , Endometriose/genética , Endometriose/patologia , Feminino , Humanos
7.
Sci Rep ; 10(1): 21389, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288796

RESUMO

Menstrual blood-derived stromal cells (MenSCs) are emerging as a strong candidate for cell-based therapies due to their immunomodulatory properties. However, their direct impact on innate immune populations remains elusive. Since macrophages play a key role in the onset and development of inflammation, understanding MenSCs implication in the functional properties of these cells is required to refine their clinical effects during the treatment of inflammatory disorders. In this study, we assessed the effects that MenSCs had on the recruitment of macrophages and other innate immune cells in two mouse models of acute inflammation, a thioglycollate (TGC)-elicited peritonitis model and a monobacterial sepsis model. We found that, in the TGC model, MenSCs injection reduced the percentage of macrophages recruited to the peritoneum and promoted the generation of peritoneal immune cell aggregates. In the sepsis model, MenSCs exacerbated infection by diminishing the recruitment of macrophages and neutrophils to the site of infection and inducing defective bacterial clearance. Additional in vitro studies confirmed that co-culture with MenSCs impaired macrophage bactericidal properties, affecting bacterial killing and the production of reactive oxygen intermediates. Our findings suggest that MenSCs modulate the macrophage population and that this modulation must be taken into consideration when it comes to future clinical applications.


Assuntos
Macrófagos/citologia , Menstruação/sangue , Células Estromais/citologia , Animais , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Neutrófilos/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Sepse/induzido quimicamente , Sepse/metabolismo , Células Estromais/metabolismo , Tioglicolatos/toxicidade
8.
Cells ; 9(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977400

RESUMO

The experimental determination of the relative biological effectiveness of thermal neutron factors is fundamental in Boron Neutron Capture Therapy. The present values have been obtained while using mixed beams that consist of both neutrons and photons of various energies. A common weighting factor has been used for both thermal and fast neutron doses, although such an approach has been questioned. At the nuclear reactor of the Institut Laue-Langevin a pure low-energy neutron beam has been used to determine thermal neutron relative biological effectiveness factors. Different cancer cell lines, which correspond to glioblastoma, melanoma, and head and neck squamous cell carcinoma, and non-tumor cell lines (lung fibroblast and embryonic kidney), have been irradiated while using an experimental arrangement designed to minimize neutron-induced secondary gamma radiation. Additionally, the cells were irradiated with photons at a medical linear accelerator, providing reference data for comparison with that from neutron irradiation. The survival and proliferation were studied after irradiation, yielding the Relative Biological Effectiveness that corresponds to the damage of thermal neutrons for the different tissue types.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias/tratamento farmacológico , Nêutrons/uso terapêutico , Eficiência Biológica Relativa , Terapia por Captura de Nêutron de Boro/métodos , Raios gama , Humanos
9.
Reproduction ; 160(1): 83-91, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32422602

RESUMO

Endometrial stromal cells (EnSCs) and decidual stromal cells (DSCs) originate from fibroblastic precursors located around the vessels of the human nonpregnant endometrium and the pregnant endometrium (decidua), respectively. Under the effect of ovarian or pregnancy hormones, these precursors differentiate (decidualize), changing their morphology and secreting factors that appear to be essential for the normal development of pregnancy. However, the different physiological context - that is, non-pregnancy vs pregnancy - of those precursors (preEnSCs, preDSCs) might affect their phenotype and functions. In the present study, we established preEnSC and preDSC lines and compared the antigen phenotype and responses to decidualization factors in these two types of stromal cell line. Analyses with flow cytometry showed that preEnSCs and preDSCs exhibited a similar antigen phenotype compatible with that of bone marrow mesenchymal stem/stromal cells. The response to decidualization in cultures with progesterone and cAMP was evaluated by analyzing changes in cell morphology by microscopy, prolactin and IL-15 secretion by enzyme immunoassay and the induction of apoptosis by flow cytometry. In all four analyses, preDSCs showed a significantly higher response than preEnSCs. The expression of progesterone receptor (PR), protein kinase A (PKA) and FOXO1 was studied with Western blotting. Both types of cells showed similar levels of PR and PKA, but the increase in PKA RI subunit expression in response to decidualization was again significantly greater in preDSCs. We conclude that preEnSCs and preDSCs are equivalent cells but differ in their ability to decidualize. Functional differences between them probably derive from factors in their different milieus.


Assuntos
Diferenciação Celular , Decídua/citologia , Endométrio/citologia , Células-Tronco Mesenquimais/citologia , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Células Estromais/citologia , Adulto , Células Cultivadas , Decídua/metabolismo , Endométrio/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Gravidez , Células Estromais/metabolismo , Adulto Jovem
10.
Appl Radiat Isot ; 163: 109205, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32392166

RESUMO

The cold neutron beam at the PF1b line at the Institut Laue-Langevin (ILL), without fast neutrons and a low contribution of gamma rays, is a very suitable facility to measure cell damage following low-energy neutron irradiation. The biological damage associated with the thermal and the boron doses can be obtained in order to evaluate the relative biological effectiveness (RBE) for Boron Neutron Capture Therapy. Three different experiments were carried out on the A375 melanoma cell line: the first one in a hospital LINAC, to obtain the reference radiation data, and the other two at the ILL, in which the damage to cells with and without boron compounds added was measured.


Assuntos
Compostos de Boro/administração & dosagem , Melanoma/patologia , Terapia por Captura de Nêutron de Boro/métodos , Linhagem Celular Tumoral , Humanos , Nêutrons
11.
Appl Radiat Isot ; 157: 109018, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31889683

RESUMO

The current methodology for determining the biological effect of Boron Neutron Capture Therapy (BNCT) has recently been questioned, and a more accurate framework based in the photon iso-effective dose has been proposed. In this work we derive a first order approximation to this quantity. The new approach removes the main drawbacks of the current method, being based on new weighting factors which are true constants (dose independent) but which can be evaluated from published data on the existing (dose-dependent) weighting factors. In addition to this, we apply the formalism to allow the comparison to a fractionated conventional radiotherapy treatment, for which there is a lot of knowledge from clinical practice. As an application, the photon iso-effective dose of a BNCT treatment for a brain tumor is estimated. An excel sheet used for these calculations is also provided as supplementary material and can be used also with user-provided input data for the estimation of the photon iso-effective dose for comparison with conventional radiotherapy, both to single and fractionated treatments.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Dosagem Radioterapêutica , Animais , Neoplasias Encefálicas/radioterapia , Relação Dose-Resposta à Radiação , Gliossarcoma/radioterapia , Humanos , Fótons/uso terapêutico , Ratos
12.
Front Bioeng Biotechnol ; 8: 610544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392174

RESUMO

Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.

13.
Stem Cell Res Ther ; 10(1): 177, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31200769

RESUMO

BACKGROUND: Human decidual stromal cells (DSCs) are involved in the maintenance and development of pregnancy, in which they play a key role in the induction of immunological maternal-fetal tolerance. Precursors of DSCs (preDSCs) are located around the vessels, and based on their antigen phenotype, previous studies suggested a relationship between preDSCs and mesenchymal stromal/stem cells (MSCs). This work aimed to further elucidate the MSC characteristics of preDSCs. METHODS: We established 15 human preDSC lines and 3 preDSC clones. Physiological differentiation (decidualization) of these cell lines and clones was carried out by in vitro culture with progesterone (P4) and cAMP. Decidualization was confirmed by the change in cellular morphology and prolactin (PRL) secretion, which was determined by enzyme immunoassay of the culture supernatants. We also studied MSC characteristics: (1) In mesenchymal differentiation, under appropriate culture conditions, these preDSC lines and clones differentiated into adipocytes, osteoblasts, and chondrocytes, and differentiation was confirmed by cytochemical assays and RT-PCR. (2) The expression of stem cell markers was determined by RT-PCR. (3) Cloning efficiency was evaluated by limited dilution. (4) Immunoregulatory activity in vivo was estimated in DBA/2-mated CBA/J female mice, a murine model of immune-based recurrent abortion. (5) Survival of preDSC in immunocompetent mice was analyzed by RT-PCR and flow cytometry. RESULTS: Under the effect of P4 and cAMP, the preDSC lines and clones decidualized in vitro: the cells became rounder and secreted PRL, a marker of physiological decidualization. PreDSC lines and clones also exhibited MSC characteristics. They differentiated into adipocytes, osteoblasts, and chondrocytes, and preDSC lines expressed stem cell markers OCT-4, NANOG, and ABCG2; exhibited a cloning efficiency of 4 to 15%; significantly reduced the embryo resorption rate (P < 0.001) in the mouse model of abortion; and survived for prolonged periods in immunocompetent mice. The fact that 3 preDSC clones underwent both decidualization and mesenchymal differentiation shows that the same type of cell exhibited both DSC and MSC characteristics. CONCLUSIONS: Together, our results confirm that preDSCs are decidual MSCs and suggest that these cells are involved in the mechanisms of maternal-fetal immune tolerance.


Assuntos
Aborto Habitual/terapia , Aborto Espontâneo/terapia , Decídua/transplante , Transplante de Células-Tronco Mesenquimais , Aborto Habitual/patologia , Aborto Espontâneo/patologia , Animais , Diferenciação Celular , Células Cultivadas/transplante , Decídua/citologia , Modelos Animais de Doenças , Endométrio/citologia , Endométrio/transplante , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Gravidez
14.
Oncotarget ; 7(16): 21875-86, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26942461

RESUMO

Epigenetic therapies have emerged as promising anticancer approaches, since epigenetic modifications play a major role in tumor initiation and progression. Hydralazine, an approved vasodilator and antihypertensive drug, has been recently shown to act as a DNA methylation inhibitor. Even though hydralazine is already tested in clinical cancer trials, its mechanism of antitumor action remains undefined. Here, we show that hydralazine induced caspase-dependent apoptotic cell death in human p53-mutant leukemic T cells. Moreover, we demonstrate that hydralazine triggered the mitochondrial pathway of apoptosis by inducing Bak activation and loss of the mitochondrial membrane potential. Hydralazine treatment further resulted in the accumulation of reactive oxygen species, whereas a superoxide dismutase mimetic inhibited hydralazine-induced cell death. Interestingly, caspase-9-deficient Jurkat cells or Bcl-2- and Bcl-xL-overexpressing cells were strongly resistant to hydralazine treatment, thereby demonstrating the dependence of hydralazine-induced apoptosis on the mitochondrial death pathway. Furthermore, we demonstrate that hydralazine treatment triggered DNA damage which might contribute to its antitumor effect.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Hidralazina/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Anti-Hipertensivos/farmacologia , Humanos , Células Jurkat
15.
Cell Res ; 22(7): 1181-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525338

RESUMO

In response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly delays starvation-induced autophagy. We have found that DNA damage is an early event of starvation-induced autophagy as measured by γ-H2AX accumulation and comet assay, with PARP-1 knockout cells displaying a reduction in both parameters. During starvation, ROS-induced DNA damage activates PARP-1, leading to ATP depletion (an early event after nutrient deprivation). The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity, leading to a delay in autophagy. PARP-1 depletion favors apoptosis in starved cells, suggesting a pro-survival role of autophagy and PARP-1 activation after nutrient deprivation. In vivo results show that neonates of PARP-1 mutant mice subjected to acute starvation, also display deficient liver autophagy, implying a physiological role for PARP-1 in starvation-induced autophagy. Thus, the PARP signaling pathway is a key regulator of the initial steps of autophagy commitment following starvation.


Assuntos
Autofagia/fisiologia , Dano ao DNA/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Western Blotting , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Dano ao DNA/genética , Imunofluorescência , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética
16.
Radiother Oncol ; 102(3): 450-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22169765

RESUMO

PURPOSE: To examine direct and bystander radiation-induced effects in normal umbilical-cord stromal stem cell (HCSSC) lines and in human cancer cells. MATERIALS AND METHODS: The UCSSC lines used in this study were obtained in our laboratory. Two cell lines (UCSSC 35 and UCSSC 37) and two human melanoma skin-cancer cells (A375 and G361) were exposed to ionizing radiation to measure acute radiation-dosage cell-survival curves and radiation-induced bystander cell-death response. Normal cells, although extremely sensitive to ionizing radiation, were resistant to the bystander effect whilst tumor cells were sensitive to irradiated cell-conditioned media, showing a dose-response relationship that became saturated at relatively low doses. We applied a biophysical model to describe bystander cell-death through the binding of a ligand to the cells. This model allowed us to calculate the maximum cell death (χ(max)) produced by the bystander effect together with its association constant (K(By)) in terms of dose equivalence (Gy). The values obtained for K(By) in A375 and G361 cells were 0.23 and 0.29 Gy, respectively. CONCLUSION: Our findings help to understand how anticancer therapy could have an additional decisive effect in that the response of sub-lethally hit tumor cells to damage might be required for therapy to be successful because the survival of cells communicating with irradiated cells is reduced.


Assuntos
Efeito Espectador , Melanoma/radioterapia , Células-Tronco Mesenquimais/efeitos da radiação , Neoplasias Cutâneas/radioterapia , Cordão Umbilical/citologia , Apoptose/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Quebras de DNA , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Humanos , Melanoma/patologia , Tolerância a Radiação , Neoplasias Cutâneas/patologia
17.
Int J Cancer ; 130(5): 1195-207, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21455989

RESUMO

DNA methyltransferase (DNMT)-inhibiting nucleoside analogs reactivate the expression of tumor suppressor genes and apoptosis-related genes silenced by methylation, thus favoring the induction of apoptosis in tumor cells. Moreover, induction of DNA damage seems to contribute to their antitumor effect. However, the apoptotic signaling pathway induced by these demethylating drugs is not well understood. Here, we have investigated the induction of apoptosis by two nucleoside DNMT inhibitors, decitabine and zebularine, in leukemic T cells. Both inhibitors induced caspase-dependent apoptosis in Jurkat, CEM-6 and MOLT-4 leukemia T cell lines, all with mutant p53, whereas resting and activated normal T lymphocytes were highly resistant to these demethylating agents. Although decitabine and zebularine showed different ability to induce apoptosis and cell cycle arrest among the three cell lines, they similarly activated the intrinsic apoptotic pathway by inducing mitochondrial alterations such as Bak activation, loss of transmembrane potential and generation of reactive oxygen species (ROS). Accordingly, Bcl-2- and Bcl-x(L) -overexpressing Jurkat cells, as well as caspase-9-deficient Jurkat cells, were resistant to apoptosis induced by decitabine and zebularine. Interestingly, ROS production seemed to be necessary for the induction of apoptosis. Apoptotic events, such as Bak and caspase activation, started as soon as 20 hr after treatment with either decitabine or zebularine. In addition, progression of apoptosis triggered by both DNMT inhibitors was paralleled by the induction of DNA damage. Our results suggest that the mitochondrial apoptotic pathway activated by decitabine and zebularine in p53 mutant leukemic T cells depends mainly on the induction of DNA damage.


Assuntos
Azacitidina/análogos & derivados , Citidina/análogos & derivados , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Dano ao DNA/efeitos dos fármacos , Genes p53 , Leucemia de Células T/genética , Mitocôndrias/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Azacitidina/farmacologia , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citidina/farmacologia , Decitabina , Humanos , Leucemia de Células T/patologia , Mutação , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/patologia
18.
Appl Microbiol Biotechnol ; 89(2): 345-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20890756

RESUMO

Microbial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria and have recently been attracting considerable attention from biotechnologists because of their potential applications in many fields, including biomedicine. We have screened the antitumoural activity of a panel of sulphated EPSs produced by a newly discovered species of halophilic bacteria. We found that the novel halophilic bacterium Halomonas stenophila strain B100 produced a heteropolysaccharide that, when oversulphated, exerted antitumoural activity on T cell lines deriving from acute lymphoblastic leukaemia (ALL). Only tumour cells were susceptible to apoptosis induced by the sulphated EPS (B100S), whilst primary T cells were resistant. Moreover, freshly isolated primary cells from the blood of patients with ALL were also susceptible to B100S-induced apoptosis. The newly discovered B100S is therefore the first bacterial EPS that has been demonstrated to exert a potent and selective pro-apoptotic effect on T leukaemia cells, and thus, we propose that the search for new antineoplastic drugs should include the screening of other bacterial EPSs, particularly those isolated from halophiles.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Halomonas/metabolismo , Leucemia-Linfoma de Células T do Adulto/fisiopatologia , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/farmacologia , Cloreto de Sódio/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Halomonas/química , Halomonas/genética , Halomonas/isolamento & purificação , Humanos , Dados de Sequência Molecular , Polissacarídeos Bacterianos/química , Microbiologia do Solo
19.
Reprod Sci ; 18(4): 383-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20959647

RESUMO

Angiotensin II receptor type 1 (AT1) activation leads to vasoconstriction and type 2 receptor (AT2) leads to vasodilation. Atrial natriuretic peptide (ANP) antagonizes the effects of AT1. In human and murine pregnancies, uterine natural killer (uNK) cells closely associate with decidual blood vessels. Protein localization of AT1, AT2, and ANP to mouse uNK cells was examined between gestation days (gds) 6 and 12, the interval of uNK cell expansion. Percentages of uNK cells expressing AT1 or AT2 changed between gd6 and gd10. Atrial natriuretic peptide did not localize to uNK cells at gd6 or 8, but did colocalize to uNK cells at gd10 and 12, times immediately after spiral arterial modification. This is the first report of AT1, AT2, and ANP expression in uterine immune cells. Expression of these molecules suggests that uNK cells have the potential to contribute to the changes in blood pressure that occur between days 5 and 12 of pregnancy in mice.


Assuntos
Fator Natriurético Atrial/metabolismo , Células Matadoras Naturais/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Útero/metabolismo , Animais , Fator Natriurético Atrial/genética , Feminino , Idade Gestacional , Imuno-Histoquímica , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Útero/imunologia
20.
Mol Immunol ; 44(10): 2587-97, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17257681

RESUMO

Several combined strategies have been recently proposed to overcome the resistance to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) showed by some tumor cells, thus improving the use of this death ligand in antitumor therapy. However, the molecular mechanisms of the tumor selective activity of TRAIL are not completely understood and hence the effects of the combined therapy on normal cells are unknown. Here, we have studied the resistance of primary T lymphocytes to TRAIL-mediated apoptosis. No significant differences were found in the expression of proteins involved in TRAIL-mediated apoptosis between resting and activated T cells. The low expression of death receptors TRAIL-R1/-R2 as well as the high levels of the antiapoptotic proteins TRAIL-R4 and cellular Fas-associated death domain-like IL-1beta-converting enzyme-inhibitory protein (c-FLIP) may explain the lack of caspase-8 activation observed upon TRAIL treatment in both cell types. We have also analyzed the effect of different sensitizing agents such as genotoxic drugs, phosphatidylinositol-3 kinase (PI3K) inhibitors, proteasome inhibitors, microtubule depolymerizing agents, histone deacetylase inhibitors (HDACi), and NF-kappaB inhibitors. Although some of them induced T cell death, only NF-kappaB inhibitors sensitized activated T cells to TRAIL-induced apoptosis, maybe through the regulation of the antiapoptotic proteins TRAIL-R4, c-FLIP(S) and members of the inhibitors of apoptosis proteins (IAP) family. These results question the safety of the combined treatments with TRAIL and NF-kappaB inhibitors against tumors.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos/fisiologia , NF-kappa B/fisiologia , Linfócitos T/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Antineoplásicos/farmacologia , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Humanos , NF-kappa B/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...