Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(19): 4426-4432, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37141489

RESUMO

The advancement of optical technology demands the development of chiral nanostructures with a strong dissymmetry of optical response. Here, we comprehensively analyze the chiral optical properties of circular twisted graphene nanostrips, with a particular emphasis on the case of a Möbius graphene nanostrip. We use the method of coordinate transformation to analytically model the electronic structure and optical spectra of the nanostrips, while employing the cyclic boundary conditions to account for their topology. It is found that the dissymmetry factors of twisted graphene nanostrips can reach 0.01, exceeding the typical dissymmetry factors of small chiral molecules by 1-2 orders of magnitude. The results of this work thus demonstrate that twisted graphene nanostrips of Möbius and similar geometries are highly promising nanostructures for chiral optical applications.

2.
Micromachines (Basel) ; 14(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36838070

RESUMO

Among the transitional metal dichalcogenides (TMDCs), molybdenum disulfide (MoS2) is considered an outstanding candidate for biosensing applications due to its high absorptivity and amenability to ionic current measurements. Dielectric metasurfaces have also emerged as a powerful platform for novel optical biosensing due to their low optical losses and strong near-field enhancements. Once functionalized with TMDCs, dielectric metasurfaces can also provide strong photon-exciton interactions. Here, we theoretically integrated a single layer of MoS2 into a CMOS-compatible asymmetric dielectric metasurface composed of TiO2 meta-atoms with a broken in-plane inversion symmetry on an SiO2 substrate. We numerically show that the designed MoS2-integrated metasurface can function as a high-figure-of-merit (FoM=137.5 RIU-1) van der Waals-based biosensor due to the support of quasi-bound states in the continuum. Moreover, owing to the critical coupling of the magnetic dipole resonances of the metasurface and the A exciton of the single layer of MoS2, one can achieve a 55% enhanced excitonic absorption by this two-port system. Therefore, the proposed design can function as an effective biosensor and is also practical for enhanced excitonic absorption and emission applications.

3.
Adv Mater ; 33(25): e2008484, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33984163

RESUMO

Mesoscopic photonic systems with tailored optical responses have great potential to open new frontiers in implantable biomedical devices. However, biocompatibility is typically a problem, as engineering of optical properties often calls for using toxic compounds and chemicals, unsuitable for in vivo applications. Here, a unique approach to biofriendly delivery of optical resonances is demonstrated. It is shown that the controllable infusion of gold nanoseeds into polycrystalline sub-micrometer vaterite spherulites gives rise to a variety of electric and magnetic Mie resonances, producing a tuneable mesoscopic optical metamaterial. The 3D reconstruction of the spherulites demonstrates the capability of controllable gold loading with volumetric filling factors exceeding 28%. Owing to the biocompatibility of the constitutive elements, "golden vaterite" paves the way to introduce designer-made Mie resonances to cutting-edge biophotonic applications. This concept is exemplified by showing efficient laser heating of gold-filled vaterite spherulites at red and near-infrared wavelengths, highly desirable in photothermal therapy, and photoacoustic tomography.


Assuntos
Carbonato de Cálcio , Ouro , Luz
4.
J Biomed Mater Res B Appl Biomater ; 109(5): 733-743, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33073509

RESUMO

There is a growing demand for polymer fiber scaffolds for biomedical applications and tissue engineering. Biodegradable polymers such as polycaprolactone have attracted particular attention due to their applicability to tissue engineering and optical neural interfacing. Here we report on a scalable and inexpensive fiber fabrication technique, which enables the drawing of PCL fibers in a single process without the use of auxiliary cladding. We demonstrate the possibility of drawing PCL fibers of different geometries and cross-sections, including solid-core, hollow-core, and grooved fibers. The solid-core fibers of different geometries are shown to support cell growth, through successful MCF-7 breast cancer cell attachment and proliferation. We also show that the hollow-core fibers exhibit a relatively stable optical propagation loss after submersion into a biological fluid for up to 21 days with potential to be used as waveguides in optical neural interfacing. The capacity to tailor the surface morphology of biodegradable PCL fibers and their non-cytotoxicity make the proposed approach an attractive platform for biomedical applications and tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Engenharia Tecidual/métodos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Proliferação de Células , Temperatura Alta , Humanos , Células MCF-7 , Teste de Materiais , Polímeros , Estresse Mecânico , Temperatura , Alicerces Teciduais
5.
J Phys Chem Lett ; 11(19): 8121-8127, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893642

RESUMO

Relatively weak red photoluminescence of carbon dots (CDots) is a major challenge on the way to their successful implementation in biological and optoelectronic devices. We present a theoretical analysis of the interaction among the surface emission centers of CDots, showing that it may determine efficiency of the red photoluminescence of CDots. Based on the previous experimental studies, it is assumed that the optical response of the CDots is determined by the molecule-like subunits of polycyclic aromatic hydrocarbons (PAHs) attached to the CDots' surface. Three characteristic types of coupling of these PAH subunits are considered: non-interacting monomers, noncovalently bound dimers, and covalently bound dimers with two, three, or four carbon linkers. We demonstrate that the CDots' photoluminescence broadens, redshifts, and weakens by 2 orders of magnitude when the free monomers are substituted by the covalently bridged centers. These and other results of our study show that the realization of CDots with many weakly interacting surface emission centers may constitute an efficient way to achieve their efficient red photoluminescence, which is highly desirable for biological and optoelectronic applications.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Pontos Quânticos/química , Teoria da Densidade Funcional , Dimerização , Modelos Moleculares , Perileno/química , Hidrocarbonetos Policíclicos Aromáticos/química , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Propriedades de Superfície
6.
Nanomaterials (Basel) ; 10(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408535

RESUMO

This paper presents the first general theory of electronic band structure and intersubband transitions in three-layer semiconductor nanoplatelets. We find a dispersion relation and wave functions of the confined electrons and use them to analyze the band structure of core/shell nanoplatelets with equal thicknesses of the shell layers. It is shown that the energies of electrons localized inside the shell layers can be degenerate for certain electron wave vectors and certain core and shell thicknesses. We also show that the energies of intersubband transitions can be nonmonotonic functions of the core and shell thicknesses, exhibiting pronounced local minima and maxima which can be observed in the infrared absorption spectra. Our results will prove useful for the design of photonic devices based on multilayered semiconductor nanoplatelets operating at infrared frequencies.

7.
Opt Express ; 28(2): 1657-1664, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121873

RESUMO

This paper presents a theory of size quantization and intersubband optical transitions in bilayer semiconductor quantum wells with asymmetric profile. We show that, in contrast to single-layer quantum wells, the size-quantized subbands of bilayer quantum wells are nonparabolic and characterized by effective masses that depend on the electron wave number and the subband number. It is found that the effective masses are related to the localization of the electron wave function in the layers of the quantum well and can be controlled by varying the chemical composition or geometric parameters of the structure. We also derive an analytical expression for the probability of optical transitions between the subbands of the bilayer quantum well. Our results are useful for the development of laser systems and photodetectors based on colloidal nanoplates and epitaxial layers of semiconductor materials with heterojunctions.

8.
Polymers (Basel) ; 12(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075203

RESUMO

Analytical modeling of soft pneumatic actuators constitutes a powerful tool for the systematic design and characterization of these key components of soft robotics. Here, we maximize the quasi-static bending angle of a soft pneumatic actuator by optimizing its cross-section for a fixed positive pressure inside it. We begin by formulating a general theoretical framework for the analytical calculation of the bending angle of pneumatic actuators with arbitrary cross-sections, which is then applied to an actuator made of a circular polymer tube and an asymmetric patch in the shape of a hollow-cylinder sector on its outer surface. It is shown that the maximal bending angle of this actuator can be achieved using a wide range of patches with different optimal dimensions and approximately the same cross-sectional area, which decreases with pressure. We also calculate the optimal dimensions of thin and small patches in thin pneumatic actuators. Our analytical results lead to clear design guidelines, which may prove useful for engineering and optimization of the key components of soft robotics with superior features.

9.
J Phys Chem Lett ; 10(17): 5111-5116, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31393732

RESUMO

The availability of carbon dots (CDots) with bright red photoluminescence (PL) would significantly broaden the range of their biological and optoelectronic applications. We present a theoretical model that predicts that amino functionalization of CDots not only shifts their PL to longer wavelengths but also preserves large oscillator strengths of the fundamental radiative transitions of CDots. The model considers the optical response of amino-functionalized CDots determined by molecule-like subunits of polycyclic aromatic hydrocarbons with one, two, or three -NH2 groups at the CDots' surface; the excited state of those subunits is characterized by strong charge separation between the amino groups and CDots' carbon core. Such a separation determines the Stokes shift of the CDots' emission, which increases with the growing amount of the amino functional groups at the CDot surface. Our model explains the experimentally observed dependence of the PL spectra of CDots on the excitation wavelength, the phenomenon well documented in the literature for nitrogen-containing CDots.

10.
ACS Nano ; 13(9): 10737-10744, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31411860

RESUMO

Carbon dots (CDots) are a promising biocompatible nanoscale source of light, yet the origin of their emission remains under debate. Here, we show that all the distinctive optical properties of CDots, including the giant Stokes shift of photoluminescence and the strong dependence of emission color on excitation wavelength, can be explained by the linear optical response of the partially sp2-hybridized carbon domains located on the surface of the CDots' sp3-hybridized amorphous cores. Using a simple quantum chemical approach, we show that the domain hybridization factor determines the localization of electrons and the electronic bandgap inside the domains and analyze how the distribution of this factor affects the emission properties of CDots. Our calculation data fully agree with the experimental optical properties of CDots, confirming the overall theoretical picture underlying the model. It is also demonstrated that fabrication of CDots with large hybridization factors of carbon domains shifts their emission to the red side of the visible spectrum, without a need to modify the size or shape of the CDots. Our theoretical model provides a useful tool for experimentalists and may lead to extending the applications of CDots in biophysics, optoelectronics, and photovoltaics.

11.
Opt Express ; 27(7): 9467-9480, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045098

RESUMO

We present a generic approach for the generation of pseudo non-diffracting Bessel beams using polarization insensitive metasurfaces with high efficiency. Cascaded unit cells, which are fully symmetric, are designed for the complete 2π phase control in the transmission mode. Based on the topological arrangements of such unit cells, two metasurfaces for the generation of zero-order (i.e., single phase profile) and first-order (i.e., merger of two distinct phase profiles) Bessel beams are designed and characterized. Both numerical simulations and experimental measurements are in agreement with each other, confirming the electromagnetic characteristics of the reported Bessel beams. Owing to the isotropy of the unit cells and the rotational symmetry of the arrangements, the proposed metasurfaces are polarization insensitive, providing a promising avenue for achieving such wave manipulations with any linear or circular polarization.

12.
Opt Lett ; 44(3): 499-502, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702663

RESUMO

In this Letter, we analyze circular dichroism (CD) enhancement of a helical semiconductor nanoribbon exposed to a weak homogenous electric field. By creating a periodic superlattice for the confined electrons, the electric field splits the electronic sub-bands into minibands and gives rise to critical points in the electronic density of states. We show that the modification of the electronic energy spectrum results in the appearance of new optically active transitions in the CD and absorption spectra, and that the CD signal of the nanoribbon is significantly enhanced at the critical points. The ability to dynamically control the chiroptical response of semiconductor nanoribbons by an external electric field makes them promising for the next-generation nanophotonic devices.

13.
Phys Chem Chem Phys ; 20(38): 25023-25030, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246191

RESUMO

Quantum confinement and collective excitations in perovskite quantum-dot (QD) supercrystals offer multiple benefits to the light emitting and solar energy harvesting devices of modern photovoltaics. Recent advances in the fabrication technology of low dimensional perovskites has made the production of such supercrystals a reality and created a high demand for the modelling of excitonic phenomena inside them. Here we present a rigorous theory of Frenkel excitons in lead halide perovskite QD supercrystals with a square Bravais lattice. The theory shows that such supercrystals support three bright exciton modes whose dispersion and polarization properties are controlled by the symmetry of the perovskite lattice and the orientations of QDs. The effective masses of excitons are found to scale with the ratio of the superlattice period and the number of QDs along the supercrystal edge, allowing one to fine-tune the electro-optical response of the supercrystals as desired for applications. We also calculate the conductivity of perovskite QD supercrystals and analyze how it is affected by the optical generation of the three types of excitons. This paper provides a solid theoretical basis for the modelling of two- and three-dimensional supercrystals made of perovskite QDs and the engineering of photovoltaic devices with superior optoelectronic properties.

14.
J Phys Chem Lett ; 9(11): 2941-2945, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29767981

RESUMO

We present rigorous analysis of optical activity of chiral semiconductor gammadions whose chirality in three dimensions is caused by the nonuniformity of thickness in the transverse plane. It is shown that such gammadions not only distinguish between the two circular polarizations upon scattering and reflection of light, like all two-dimensional semiconductor nanostructures with planar chirality do, but also exhibit circular dichroism and circularly polarized luminescence. Chiral semiconductor gammadions whose charge carriers are mostly confined to the arms are found to feature both high dissymmetry of optical response and a constant-sign circular dichroism signal over a wide frequency range. It is also shown that the strength of the gammadion's chiroptical response is determined solely by two geometric factors: the variation range of the gammadion's thickness and the arms' curvature. Our seminal theoretical study is intended to lay the foundation for future applications of semiconductor gammadions in chiral nanophotonics and nanotechnology.

15.
ACS Nano ; 12(6): 6203-6209, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29812920

RESUMO

The search for the optimal geometry of optically active semiconductor nanostructures is making steady progress and has far-reaching benefits. Yet the helical springlike shape, which is very likely to provide a highly dissymmetric optical response, remains somewhat understudied theoretically. Here we comprehensively analyze the optical activity of semiconductor nanosprings using a fully quantum-mechanical model of their electronic subsystem and taking into account the anisotropy of their interaction with light. We show that the circular dichroism of semiconductor nanosprings can exceed that of ordinary semiconductor nanocrystals by a factor of 100 and be comparable to the circular dichroism of metallic nanosprings. It is also demonstrated that nanosprings can feature a total dissymmetry of optical response for certain ratios between their length and coil height. The magnitude and sign of the circular dichroism signal can be controlled by stretching or compressing the nanosprings, which makes them a promising material base for optomechanical sensors, polarization controllers, and other types of optically active nanophotonic devices.

16.
Opt Express ; 26(4): 5052-5059, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475347

RESUMO

A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

17.
Opt Express ; 26(3): 3211-3220, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401852

RESUMO

Electromagnetic force actuated plasmonic nonlinear metamaterials have attracted a great deal of interest from the scientific community over the past several years, owing to the abundant interactions between the electromagnetically induced Ampère's force and the stored mechanical force within the meta-atoms. Despite this interest, a comprehensive study of such metamaterials is still lacking, especially for the nonlinear coupling states analysis. Here we fill this gap by extensively studying the physics of electromagnetic force actuated plasmonic nonlinear metamaterials and presenting a number of new significant findings. Our study will help physicists and engineers to better understand this hot topic and stimulate rapid developments of this promising nonlinear metamaterials.

18.
ACS Nano ; 12(2): 954-964, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29338193

RESUMO

Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

19.
J Opt Soc Am A Opt Image Sci Vis ; 34(10): 1940-1944, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036066

RESUMO

We study the propagation of real-argument Laguerre-Gaussian beams beyond the paraxial approximation using the perturbation corrections to the complex-argument Laguerre-Gaussian beams derived earlier by Takenaka et al. [J. Opt. Soc. Am. A2, 826 (1985)JOAOD60740-323210.1364/JOSAA.2.000826]. Each higher-order correction to the amplitude of the real-argument beam (l, m) is represented as a superposition of the same-order corrections to the amplitudes of the complex-argument beams (l, q) with q=0,1,2,…,m. We derive explicit expressions for the electric and magnetic fields of transversely and longitudinally polarized real-argument beams and calculate the chirality densities of these beams up to the fourth order of the smallness parameter. For the first time to the best of our knowledge, we show that essentially achiral Gaussian beams (corresponding to l=m=0) possess nonzero chirality density due to the wavefront curvature. The obtained corrections to the paraxial beams may prove useful for precise laser beam shaping and in studies of optomechanical forces.

20.
Opt Lett ; 42(13): 2423-2426, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957249

RESUMO

We use quantum theory of molecular crystals to study collective excitations (excitons) of gyrotropic quantum-dot (QD) supercrystals with complex lattices consisting of two or more sublattices of semiconductor QDs. We illustrate the potentials of our approach by applying it to analytically calculate the linear permittivity tensor of supercrystals with two QDs per unit cell. The spatial dispersions of exciton energy bands and permittivity tensor components are examined in detail for two-dimensional supercrystals with a square lattice, which are relatively easy to fabricate in practice. Our results provide a systematic and versatile framework for the engineering of dispersion properties of gyrotropic QD supercrystals and for the analysis of their absorption and circular dichroism spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...