Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(10): 1767-1775, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417034

RESUMO

The low-dimensional quantum-magnet, linarite, PbCuS4(OH)2, has been investigated using terahertz (THz) spectroscopy coupled with detailed density functional theory (DFT) calculations in order to explore the effects of the temperature on its lattice vibrations. Linarite is characterized by largely isolated CuO chains propagating along the crystallographic b-axis, which at very low temperatures are responsible for exotic, quasi-1D magnetism in this material. To better understand the synergy between the structural bonds and lattice oscillations that contribute to these chains, polarized THz spectroscopic measurements were performed. Consolidating these results with detailed DFT calculations has revealed that the anisotropic vibrational motion for the THz modes is correlated with extreme motion associated with the crystallographic b-axis. An unexpected feature observed in the infrared spectrum is attributed to subtle lattice distortions which break the centro-symmetry in linarite at high temperatures. This phenomenon has not previously been observed in linarite and likely results from anharmonicity in lattice oscillations.

2.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837366

RESUMO

High-quality NdCrSb3 single crystals are grown using a Sn-flux method, for electronic transport and magnetic structure study. Ferromagnetic ordering of the Nd3+ and Cr3+ magnetic sublattices are observed at different temperatures and along different crystallographic axes. Due to the Dzyaloshinskii-Moriya interaction between the two magnetic sublattices, the Cr moments rotate from the b axis to the a axis upon cooling, resulting in a spin reorientation (SR) transition. The SR transition is reflected by the temperature-dependent magnetization curves, e.g., the Cr moments rotate from the b axis to the a axis with cooling from 20 to 9 K, leading to a decrease in the b-axis magnetization f and an increase in the a-axis magnetization. Our elastic neutron scattering along the a axis shows decreasing intensity of magnetic (300) peak upon cooling from 20 K, supporting the SR transition. Although the magnetization of two magnetic sublattices favours different crystallographic axes and shows significant anisotropy in magnetic and transport behaviours, their moments are all aligned to the field direction at sufficiently large fields (30 T). Moreover, the magnetic structure within the SR transition region is relatively fragile, which results in negative magnetoresistance by applying magnetic fields along either a or b axis. The metallic NdCrSb3 single crystal with two ferromagnetic sublattices is an ideal system to study the magnetic interactions, as well as their influences on the electronic transport properties.

3.
Small ; 18(21): e2200847, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35484474

RESUMO

Hybrid halide perovskites have emerged as highly promising photovoltaic materials because of their exceptional optoelectronic properties, which are often optimized via compositional engineering like mixing halides. It is well established that hybrid perovskites undergo a series of structural phase transitions as temperature varies. In this work, the authors find that phase transitions are substantially suppressed in mixed-halide hybrid perovskite single crystals of MAPbI3-x Brx (MA = CH3 NH3 + and x = 1 or 2) using a complementary suite of diffraction and spectroscopic techniques. Furthermore, as a general behavior, multiple crystallographic phases coexist in mixed-halide perovskites over a wide temperature range, and a slightly distorted monoclinic phase, hitherto unreported for hybrid perovskites, is dominant at temperatures above 100 K. The anomalous structural evolution is correlated with the glassy behavior of organic cations and optical phonons in mixed-halide perovskites. This work demonstrates the complex interplay between composition engineering and lattice dynamics in hybrid perovskites, shedding new light on their unique properties.

4.
Rev Sci Instrum ; 92(7): 073304, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340461

RESUMO

There are five filter-analyzer neutron spectrometers available worldwide for scientists to use in order to measure the vibrational density of states in various samples. While Taipan, the thermal spectrometer, has been operated as a triple-axis spectrometer at the Australian Centre for Neutron Scattering since 2010, a beryllium filter analyzer spectrometer was added in 2016. Due to the complex nature of the data post-processing, it has thus far been impossible to fully treat experimental data from scientific measurements taken over the last five years. We have successfully created a robust method of treating data from the Taipan filter-analyzer and present the method on three different samples. The data-treatment process includes correction for the non-linear energy variation of a particular monochromator, removal of higher-order wavelength contamination, and estimation of low-energy multiple-scattering. The steps described here can be utilized by all users of the Australian Nuclear Science and Technology Organisation "Be-filter"-past, present, and future.

5.
Nat Commun ; 12(1): 2306, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863905

RESUMO

Novel effects induced by nonmagnetic impurities in frustrated magnets and quantum spin liquid represent a highly nontrivial and interesting problem. A theoretical proposal of extended modulated spin structures induced by doping of such magnets, distinct from the well-known skyrmions has attracted significant interest. Here, we demonstrate that nonmagnetic impurities can produce such extended spin structures in h-YMnO3, a triangular antiferromagnet with noncollinear magnetic order. Using inelastic neutron scattering (INS), we measured the full dynamical structure factor in Al-doped h-YMnO3 and confirmed the presence of magnon damping with a clear momentum dependence. Our theoretical calculations can reproduce the key features of the INS data, supporting the formation of the proposed spin textures. As such, our study provides the first experimental confirmation of the impurity-induced spin textures. It offers new insights and understanding of the impurity effects in a broad class of noncollinear magnetic systems.

6.
Mater Sci Eng C Mater Biol Appl ; 123: 111970, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812598

RESUMO

Nanoparticles have a great potential to increase the therapeutic efficiency of several cancer therapies. This research examines the potential for silver-doped lanthanum manganite nanoparticles to enhance radiation therapy to target radioresistant brain cancer cells, and their potential in combinational therapy with magnetic hyperthermia. Magnetic and structural characterisation found all dopings of nanoparticles (NPs) to be pure and single phase with an average crystallite size of approximately 15 nm for undoped NPs and 20 nm for silver doped NPs. Additionally, neutron diffraction reveals that La0.9Ag0.1MnO3 (10%-LAGMO) NPs exhibit residual ferromagnetism at 300 K that is not present in lower doped NPs studied in this work, indicating that the Curie temperature may be manipulated according to silver doping. This radiobiological study reveals a completely cancer-cell selective treatment for LaMnO3, La0.975Ag0.025MnO3 and La0.95Ag0.05MnO3 (0, 2.5 and 5%-LAGMO) and also uncovers a potent combination of undoped lanthanum manganite with orthovoltage radiation. Cell viability assays and real time imaging results indicated that a concentration of 50 µg/mL of the aforementioned nanoparticles do not affect the growth of Madin-Darby Canine Kidney (MDCK) non-cancerous cells over time, but stimulate its metabolism for overgrowth, while being highly toxic to 9L gliosarcoma (9LGS). This is not the case for 10%-LAGMO nanoparticles, which were toxic to both non-cancerous and cancer cell lines. The nanoparticles also exhibited a level of toxicity that was regulated by the overproduction of free radicals, such as reactive oxygen species, amplified when silver ions are involved. With the aid of fluorescent imaging, the drastic effects of these reactive oxygen species were visualised, where nucleus cleavage (an apoptotic indicator) was identified as a major consequence. The genotoxic response of this effect for 9LGS and MDCK due to 10%-LAGMO NPs indicates that it is also causing DNA double strand breaks within the cell nucleus. Using 125 kVp orthovoltage radiation, in combination with an appropriate amount of NP-induced cell death, identified undoped lanthanum manganite as the most ideal treatment. Real-time imaging following the combination treatment of undoped lanthanum manganite nanoparticles and radiation, highlighted a hinderance of growth for 9LGS, while MDCK growth was boosted. The clonogenic assay following incubation with undoped lanthanum manganite nanoparticles combined with a relatively low dose of radiation (2 Gy) decreased the surviving fraction to an exceptionally low (0.6 ± 6.7)%. To our knowledge, these results present the first biological in-depth analysis on silver-doped lanthanum manganite as a brain cancer selective chemotherapeutic and radiation dose enhancer and as a result will propel its first in vivo investigation.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Cães , Lantânio/toxicidade , Compostos de Manganês , Nanopartículas Metálicas/toxicidade
7.
Inorg Chem ; 58(18): 12317-12324, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31441648

RESUMO

The room-temperature structure of brownmillerite-type Sr2Fe2O5 remains controversial, despite numerous published crystallographic studies utilizing X-ray, neutron, and electron diffraction data collected on single-crystalline and powder samples. The main disagreements concern the ordering of twisted FeO4 tetrahedral chains within and between the layers stacked along the b axis, and the impact of this ordering on oxide-ionic conductivity. Here, we present new data along with a reinterpretation of previously published diffraction images, including the reassignment of satellite reflections, which harmonize the results of past studies in a unified description of tetrahedral chain ordering in Sr2Fe2O5 at length scales relevant to X-ray and neutron diffraction. Implications for the prevailing model of oxide ion transport in this material are also discussed.

8.
Inorg Chem ; 56(14): 7851-7860, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28641000

RESUMO

Kagomé lattice types have been of intense interest as idealized examples of extended frustrated spin systems. Here we demonstrate how the use of neutron diffraction and inelastic neutron scattering coupled with spin wave theory calculations can be used to elucidate the complex magnetic interactions of extended spin networks. We show that the magnetic properties of the coordination polymer Mn3(1,2,4-(O2C)3C6H3)2, a highly distorted kagomé lattice, have been erroneously characterized as a canted antiferromagnet in previous works. Our results demonstrate that, although the magnetic structure is ferrimagnetic, with a net magnetic moment, frustration persists in the system. We conclude by showing that the conventions of the Goodenough-Kanamori rules, which are often applied to similar magnetic exchange interactions, are not relevant in this case.

9.
J Phys Condens Matter ; 29(14): 145801, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28248641

RESUMO

Using magnetization, dielectric constant, and neutron diffraction measurements on a high quality single crystal of YBaCuFeO5 (YBCFO), we demonstrate that the crystal shows two antiferromagnetic transitions at [Formula: see text] K and [Formula: see text] K, and displays a giant dielectric constant with a characteristic of the dielectric relaxation at T N2. It does not show the evidence of the electric polarization for the crystal used for this study. The transition at T N1 corresponds with a paramagnetic to antiferromagnetic transition with a magnetic propagation vector doubling the unit cell along three crystallographic axes. Upon cooling, at T N2, the commensurate spin ordering transforms to a spiral magnetic structure with a propagation vector of ([Formula: see text] [Formula: see text] [Formula: see text]), where [Formula: see text], [Formula: see text], and [Formula: see text] are odd, and the incommensurability δ is temperature dependent. Around the transition boundary at T N2, both commensurate and incommensurate spin ordering coexist.

10.
J Phys Condens Matter ; 28(12): 126005, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26931058

RESUMO

We describe powder inelastic neutron scattering experiments on a porous coordination polymer Co3(OH)2(C4O4)2, which has two different ordered magnetic phases known to display spin frustrated behaviour, resulting in an idle-spin phase. The moment on each ion is represented by an effective total angular moment J(eff ) = ½. A non-dispersive magnetic mode was observed in the idle-spin phase which is described by a simple dimer model that assumes ΔJ = 0. The excitation was found to persist well above the long range ordering temperature into the paramagnetic region. A combination of frustration, the J(eff) = ½ and low dimensionality may induce these quantum phenomena.

11.
Chemphyschem ; 15(17): 3776-81, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25212729

RESUMO

The crystal structure of pentamethylbenzene has been obtained for the first time with the use of synchrotron radiation, whilst the low-energy spectrum of lattice dynamics, dominated by the methyl group torsions, was obtained using inelastic neutron scattering. The effect of symmetry lowering by the removal of a single methyl group relative to hexamethylbenzene has been investigated, including the role that this plays in the charge-transfer characteristics of complexes formed with tetracyanoethylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...