Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1276: 341632, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573113

RESUMO

In this work, a geological sample of great astrobiological interest was studied through analytical techniques that are currently operating in situ on Mars and others that will operate in the near future. The sample analyzed consisted of an oncoid, which is a type of microbialite, collected in the Salar Carachi Pampa, Argentina. The main peculiarity of microbialites is that they are organo-sedimentary deposits formed by the in situ fixation and precipitation of calcium carbonate due to the growth and metabolic activities of microorganisms. For this reason, the Carachi Pampa oncoid was selected as a Martian analog for astrobiogeochemistry study. In this sense, the sample was characterized by means of the PIXL-like, SuperCam-like and SHERLOC-like instruments, which represent instruments on board the NASA Perseverance rover, and by means of RLS-like and MOMA-like instruments, which represent instruments on board the future ESA Rosalind Franklin rover. It was possible to verify that the most important conclusions and discoveries have been obtained from the combination of the results. Likewise, it was also shown that Perseverance rover-like remote-sensing instruments allowed a first detailed characterization of the biogeochemistry of the Martian surface. With this first characterization, areas of interest for in-depth analysis with Rosalind Franklin-like instruments could be identified. Therefore, from a first remote-sensing elemental identification (PIXL-like instrument), followed by a remote-sensing molecular characterization (SuperCam and SHERLOC-like instruments) and ending with an in-depth microscopic analysis (RLS and MOMA-like instruments), a wide variety of compounds were found. On the one hand, the expected minerals were carbonates, such as aragonite, calcite and high-magnesium calcite. On the other hand, unexpected compounds consisted of minerals related to the Martian/terrestrial surface (feldspars, pyroxenes, hematite) and organic compounds related to the past biological activity related to the oncoid (kerogen, lipid biomarkers and carotenes). Considering samples resembling microbialites have already been found on Mars and that one of the main objectives of the missions is to identify traces of past life, the study of microbialites is a potential way to find biosignatures protected from the inhospitable Martian environment. In addition, it should be noted that in this work, further conclusions have been obtained through the study of the results as a whole, which could also be carried out on Mars.

2.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569848

RESUMO

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.


Assuntos
Meio Ambiente Extraterreno , Marte , Calibragem , Meio Ambiente Extraterreno/química , Minerais/análise , Análise Espectral Raman/métodos
3.
Space Sci Rev ; 216(8): 138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281235

RESUMO

SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.

4.
Artigo em Inglês | MEDLINE | ID: mdl-27106813

RESUMO

We test the capabilities of in situ Raman spectroscopy for non-destructive analysis of degradation processes in invaluable masterpieces, as well as for the characterization of minerals and prehistoric rock-art in caves. To this end, we have studied the mechanism of decay suffered by the 15th-century limestone sculptures that decorate the retro-choir of Burgos Cathedral (N Spain). In situ Raman probe detected hydrated sulfate and nitrate minerals on the sculptures, which are responsible for the decay of the original limestone. In addition, in situ Raman analyses were performed on unique speleothems in El Soplao Cave (Cantabria, N Spain) and in the Gruta de las Maravillas (Aracena, SW Spain). Unusual cave minerals were detected in El Soplao Cave, such as hydromagnesite (Mg5(CO3)4(OH)2·4H2O), as well as ferromanganese oxides in the black biogenic speleothems recently discovered in this cavern. In the Gruta de las Maravillas, gypsum (CaSO4·2H2O) was identified for the first time, as part of the oldest cave materials, so providing additional evidence of hypogenic mechanisms that occurred in this cave during earlier stages of its formation. Finally, we present preliminary analyses of several cave paintings in the renowned "Polychrome Hall" of Altamira Cave (Cantabria, N. Spain). Hematite (Fe2O3) is the most abundant mineral phase, which provides the characteristic ochre-reddish color to the Altamira bison and deer paintings. Thus, portable Raman spectroscopy is demonstrated to be an analytical technique compatible with preserving our cultural and natural heritage, since the analysis does not require physical contact between the Raman head and the analyzed items.

5.
Philos Trans A Math Phys Eng Sci ; 368(1922): 3145-52, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20529951

RESUMO

For the first time, micro-Raman spectroscopy has been applied to the structural study of four megacryometeors (extremely large atmospheric ice conglomerations that fall in general under blue-sky atmospheric conditions) that fell in Spain. The Raman spectra taken on the megacryometeor cores have been compared with those obtained from an in situ and online study performed on the crystallization process of water in the laboratory. A detailed comparison of the band profiles obtained made it possible to place the formation of the megacryometeors within a particular range of temperatures (-10 to -20 degrees C), which in turn can be related with the altitude of formation in the atmosphere. These results have also been compared with isotope concentrations (delta(18)O and deltaD) previously obtained in these cores. The two sets of results show a close correlation.


Assuntos
Atmosfera/química , Gelo/análise , Análise Espectral Raman , Hidróxidos/química
6.
Philos Trans A Math Phys Eng Sci ; 368(1922): 3153-66, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20529952

RESUMO

Shock metamorphism in chondritic parent bodies produces typical textures, visible under the microscope, which are a consequence of structural deformation of the crystals. Such deformations can be studied with Raman spectroscopy. The vibrational characteristics of olivines and pyroxenes, structurally deformed by weak-to-moderate shock metamorphism, have been determined on four Spanish ordinary chondrites (Cañellas, Olmedilla de Alarcón, Reliegos and Olivenza). Such deformations would affect, in principle, the band positions and widths of the Raman spectra peaks. The measured band positions and relative intensities are consistent with chemical composition for olivines and pyroxenes, but show little influence on the degree of shock. However, the full spectral band width of the silicate internal modes shows some dependence on the impact grade, which could be attributed to inhomogeneous effects produced by the impacts.


Assuntos
Meteoroides , Análise Espectral Raman , Compostos de Ferro/análise , Compostos de Magnésio/análise , Minerais/análise , Silicatos/análise , Espanha , Vibração
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 68(4): 1138-42, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17869164

RESUMO

Acid mine drainage is formed when pyrite (FeS(2)) is exposed and reacts with air and water to form sulfuric acid and dissolved iron. Tinto River (Huelva, Spain) is an example of this phenomenon. In this study, Raman spectroscopy has been used to investigate the speciation of the system iron(III)-sulfuric acid-water as an approach to Tinto River's aqueous solutions. The molalities of sulfuric acid (0.09 mol/kg) and iron(III) (0.01-1.5 mol/kg) were chosen to mimic the concentration of the species in Tinto River waters. Raman spectra of the solutions reveal a strong iron(III)-sulfate inner-sphere interaction through the nu(1) sulfate band at 981 cm(-1) and its shoulder at 1005 cm(-1). Iron(III)-sulfate interaction may also be facilitated by hydrogen bonds and monitored in the Raman spectra through the symmetric stretching band of bisulfate at 1052 cm(-1) and a shoulder at 1040 cm(-1). Other bands in the low-frequency region of the Raman spectra are attributed to the hydrogen-bonded complexes formation as well.


Assuntos
Compostos Férricos/química , Rios/química , Análise Espectral Raman , Ácidos Sulfúricos/química , Água/química , Espanha , Água/análise
8.
J Food Prot ; 61(11): 1489-96, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9829191

RESUMO

This study was carried out to determine the effect of water activity (aw) and temperature on the patterns of colonization of maize grain by isolates of Fusarium moniliforme and F. proliferatum in the presence of interacting spoilage fungi, such as Aspergillus flavus, A. niger, A. ochraceus, and Penicillium implicatum, over 4-week incubation periods. The impact that such interactions have on Fusarium infection of maize grain and populations and on the production of fumonisins were all evaluated. At 0.93 and 0.95 aw, interactions of the two Fusarium spp. with other species to a large extent resulted in mutual inhibition on contact or overgrowth by the Aspergillus and Penicillium spp., regardless of temperature and growth rates of the species. Seed infection by the Fusarium spp. at 25 degrees C was influenced mainly by A. flavus and A. niger, with a reduction of infection by up to 45 and 30%, respectively, after 2 weeks. At 15 degrees C and lowered aw levels, infection was reduced, and sometimes completely inhibited, by A. niger, A. ochraceus, and P. implicatum. By contrast, populations of the Fusarium spp. (CFU per gram grain) were reduced mainly by A. flavus and P. implicatum. A. niger reduced populations of the Fusarium spp. at 0.93 and 0.95 aw, particularly after 4 weeks of incubation. Interaction with A. niger, A. ochraceus, and A. flavus at 15 and 25 degrees C and 0.98 aw resulted in a significant stimulation in fumonisin production by both Fusarium spp. Interaction with P. implicatum resulted in a decrease in fumonisin production by F. moniliforme. However, interaction with F. proliferatum resulted in an enhanced production at both temperatures and 0.95 and 0.98 aw. This study has shown that fungal interactions may act as an additional control factor in Fusarium spp. development on grain. However, although interactions lead to a decreased colonization by Fusarium, mainly at lower aw, a decrease in fumonisin production accumulation does not occur at the same time. Knowledge of these interactions is essential for improving effective control procedures for preventing growth and mycotoxin production by such fungi.


Assuntos
Aspergillus/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Micotoxinas/biossíntese , Penicillium/crescimento & desenvolvimento , Zea mays/microbiologia , Contagem de Colônia Microbiana , Ecossistema , Fusarium/metabolismo , Sementes/microbiologia , Temperatura , Água , Zea mays/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...