Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Contrib Mineral Petrol ; 174(8): 71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523094

RESUMO

The petrogenesis and relationship of diamondite to well-studied monocrystalline and fibrous diamonds are poorly understood yet would potentially reveal new aspects of how diamond-forming fluids are transported through the lithosphere and equilibrate with surrounding silicates. Of 22 silicate- and oxide-bearing diamondites investigated, most yielded garnet intergrowths (n = 15) with major element geochemistry (i.e. Ca-Cr) classifying these samples as low-Ca websteritic or eclogitic. The garnet REE patterns fit an equilibrium model suggesting the diamond-forming fluid shares an affinity with high-density fluids (HDF) observed in fibrous diamonds, specifically on the join between the saline-carbonate end-members. The δ13C values for the diamonds range from - 5.27 to - 22.48‰ (V-PDB) with δ18O values for websteritic garnets ranging from + 7.6 to + 5.9‰ (V-SMOW). The combined C-O stable isotope data support a model for a hydrothermally altered and organic carbon-bearing subducted crustal source(s) for the diamond- and garnet-forming media. The nitrogen aggregation states of the diamonds require that diamondite-formation event(s) pre-dates fibrous diamond-formation and post-dates most of the gem monocrystalline diamond-formation events at Orapa. The modelled fluid compositions responsible for the precipitation of diamondites match the fluid-poor and fluid-rich (fibrous) monocrystalline diamonds, where all grow from HDFs within the saline-silicic-carbonatitic ternary system. However, while the nature of the parental fluid(s) share a common lithophile element geochemical affinity, the origin(s) of the saline, silicic, and/or carbonatitic components of these HDFs do not always share a common origin. Therefore, it is wholly conceivable that the diamondites are evidence of a distinct and temporally unconstrained tectono-thermal diamond-forming event beneath the Kaapvaal craton.

2.
Nature ; 458(7237): 485-8, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19325630

RESUMO

In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995 nm wavelength range, and designated 2008 TC(3) (refs 4-6). It subsequently hit the Earth. Because it exploded at 37 km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95 kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.

3.
Nature ; 427(6970): 117-20, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14712267

RESUMO

Several lines of geological and geochemical evidence indicate that the level of atmospheric oxygen was extremely low before 2.45 billion years (Gyr) ago, and that it had reached considerable levels by 2.22 Gyr ago. Here we present evidence that the rise of atmospheric oxygen had occurred by 2.32 Gyr ago. We found that syngenetic pyrite is present in organic-rich shales of the 2.32-Gyr-old Rooihoogte and Timeball Hill formations, South Africa. The range of the isotopic composition of sulphur in this pyrite is large and shows no evidence of mass-independent fractionation, indicating that atmospheric oxygen was present at significant levels (that is, greater than 10(-5) times that of the present atmospheric level) during the deposition of these units. The presence of rounded pebbles of sideritic iron formation at the base of the Rooihoogte Formation and an extensive and thick ironstone layer consisting of haematitic pisolites and oölites in the upper Timeball Hill Formation indicate that atmospheric oxygen rose significantly, perhaps for the first time, during the deposition of the Rooihoogte and Timeball Hill formations. These units were deposited between what are probably the second and third of the three Palaeoproterozoic glacial events.


Assuntos
Atmosfera/química , Sedimentos Geológicos/química , Oxigênio/análise , Carbonatos/análise , Clima Frio , Geografia , Sedimentos Geológicos/microbiologia , Gelo , Ferro/análise , Isótopos , África do Sul , Sulfetos/análise , Enxofre/análise , Fatores de Tempo
4.
Science ; 294(5541): 345-8, 2001 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11598294

RESUMO

We have determined the abundances of 16O, 17O, and 18O in 31 lunar samples from Apollo missions 11, 12, 15, 16, and 17 using a high-precision laser fluorination technique. All oxygen isotope compositions plot within +/-0.016 per mil (2 standard deviations) on a single mass-dependent fractionation line that is identical to the terrestrial fractionation line within uncertainties. This observation is consistent with the Giant Impact model, provided that the proto-Earth and the smaller impactor planet (named Theia) formed from an identical mix of components. The similarity between the proto-Earth and Theia is consistent with formation at about the same heliocentric distance. The three oxygen isotopes (delta17O) provide no evidence that isotopic heterogeneity on the Moon was created by lunar impacts.


Assuntos
Evolução Planetária , Lua , Isótopos de Oxigênio , Oxigênio , Simulação por Computador , Meio Ambiente Extraterreno , Meteoroides
5.
Science ; 286(5443): 1331-5, 1999 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-10558982

RESUMO

Alteration of the Allende meteorite caused shifts in oxygen isotope ratios along a single mass fractionation line. If alteration was caused by aqueous fluid, the pattern of oxygen isotope fractionation can be explained only by flow of reactive water down a temperature gradient. Down-temperature flow of aqueous fluid within planetesimals is sufficient to explain the mineralogical and oxygen isotopic diversity among CV, CM, and CI carbonaceous chondrites and displacement of the terrestrial planets from the primordial slope 1. 00 line on the oxygen three-isotope plot.

6.
Science ; 201(4353): 348-9, 1978 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-17793732

RESUMO

Devonian brachiopods, identifiable at the generic level, have been recovered from calc-silicate rocks more intensely metamorphosed and metasomatized than any other known fossil occurrence. The fossils are a key stratigraphic link between granulite facies rocks of central New Hampshire and fossiliferous rocks of western New Hampshire and Maine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...