Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657260

RESUMO

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Reparo do DNA , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Neoplasias/genética , Proteômica , Proteína Supressora de Tumor p53/metabolismo
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613601

RESUMO

In 2021, the fifth edition of the WHO classification of tumors of the central nervous system (WHO CNS5) was published. Molecular features of tumors were directly incorporated into the diagnostic decision tree, thus affecting both the typing and staging of the tumor. It has changed the traditional approach, based solely on histopathological classification. The Cancer Genome Atlas project (TCGA) is one of the main sources of molecular information about gliomas, including clinically annotated transcriptomic and genomic profiles. Although TCGA itself has played a pivotal role in developing the WHO CNS5 classification, its proprietary databases still retain outdated diagnoses which frequently appear incorrect and misleading according to the WHO CNS5 standards. We aimed to define the up-to-date annotations for gliomas from TCGA's database that other scientists can use in their research. Based on WHO CNS5 guidelines, we developed an algorithm for the reclassification of TCGA glioma samples by molecular features. We updated tumor type and diagnosis for 828 out of a total of 1122 TCGA glioma cases, after which available transcriptomic and methylation data showed clustering features more consistent with the updated grouping. We also observed better stratification by overall survival for the updated diagnoses, yet WHO grade 3 IDH-mutant oligodendrogliomas and astrocytomas are still indistinguishable. We also detected altered performance in the previous diagnostic transcriptomic molecular biomarkers (expression of SPRY1, CRNDE and FREM2 genes and FREM2 molecular pathway) and prognostic gene signature (FN1, ITGA5, OSMR, and NGFR) after reclassification. Thus, we conclude that further efforts are needed to reconsider glioma molecular biomarkers.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Transcriptoma , Glioma/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Genômica , Biomarcadores Tumorais/genética , Epigênese Genética , Organização Mundial da Saúde , Mutação , Isocitrato Desidrogenase/genética
3.
Biochemistry (Mosc) ; 86(11): 1477-1488, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906047

RESUMO

EGFR, BRAF, PIK3CA, and KRAS genes play major roles in EGFR pathway, and accommodate activating mutations that predict response to many targeted therapeutics. However, connections between these mutations and EGFR pathway expression patterns remain unexplored. Here, we investigated transcriptomic associations with these activating mutations in three ways. First, we compared expressions of these genes in the mutant and wild type tumors, respectively, using RNA sequencing profiles from The Cancer Genome Atlas project database (n = 3660). Second, mutations were associated with the activation level of EGFR pathway. Third, they were associated with the gene signatures of differentially expressed genes from these pathways between the mutant and wild type tumors. We found that the upregulated EGFR pathway was linked with mutations in the BRAF (thyroid cancer, melanoma) and PIK3CA (breast cancer) genes. Gene signatures were associated with BRAF (thyroid cancer, melanoma), EGFR (squamous cell lung cancer), KRAS (colorectal cancer), and PIK3CA (breast cancer) mutations. However, only for the BRAF gene signature in the thyroid cancer we observed strong biomarker diagnostic capacity with AUC > 0.7 (0.809). Next, we validated this signature on the independent literature-based dataset (n = 127, fresh-frozen tissue samples, AUC 0.912), and on the experimental dataset (n = 42, formalin fixed, paraffin embedded tissue samples, AUC 0.822). Our results suggest that the RNA sequencing profiles can be used for robust identification of the replacement of Valine at position 600 with Glutamic acid in the BRAF gene in the papillary subtype of thyroid cancer, and evidence that the specific gene expression levels could provide information about the driver carcinogenic mutations.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Melanoma , Mutação , Proteínas de Neoplasias , Transdução de Sinais/genética , Neoplasias da Glândula Tireoide , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
4.
Heliyon ; 7(3): e06408, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33748479

RESUMO

DNA repair can prevent mutations and cancer development, but it can also restore damaged tumor cells after chemo and radiation therapy. We performed RNA sequencing on 95 human pathological thyroid biosamples including 17 follicular adenomas, 23 follicular cancers, 3 medullar cancers, 51 papillary cancers and 1 poorly differentiated cancer. The gene expression profiles are annotated here with the clinical and histological diagnoses and, for papillary cancers, with BRAF gene V600E mutation status. DNA repair molecular pathway analysis showed strongly upregulated pathway activation levels for most of the differential pathways in the papillary cancer and moderately upregulated pattern in the follicular cancer, when compared to the follicular adenomas. This was observed for the BRCA1, ATM, p53, excision repair, and mismatch repair pathways. This finding was validated using independent thyroid tumor expression dataset PRJEB11591. We also analyzed gene expression patterns linked with the radioiodine resistant thyroid tumors (n = 13) and identified 871 differential genes that according to Gene Ontology analysis formed two functional groups: (i) response to topologically incorrect protein and (ii) aldo-keto reductase (NADP) activity. We also found RNA sequencing reads for two hybrid transcripts: one in-frame fusion for well-known NCOA4-RET translocation, and another frameshift fusion of ALK oncogene with a new partner ARHGAP12. The latter could probably support increased expression of truncated ALK downstream from 4th exon out of 28. Both fusions were found in papillary thyroid cancers of follicular histologic subtype with node metastases, one of them (NCOA4-RET) for the radioactive iodine resistant tumor. The differences in DNA repair activation patterns may help to improve therapy of different thyroid cancer types under investigation and the data communicated may serve for finding additional markers of radioiodine resistance.

5.
Semin Cancer Biol ; 60: 311-323, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31412295

RESUMO

Molecular diagnostics is becoming one of the major drivers of personalized oncology. With hundreds of different approved anticancer drugs and regimens of their administration, selecting the proper treatment for a patient is at least nontrivial task. This is especially sound for the cases of recurrent and metastatic cancers where the standard lines of therapy failed. Recent trials demonstrated that mutation assays have a strong limitation in personalized selection of therapeutics, consequently, most of the drugs cannot be ranked and only a small percentage of patients can benefit from the screening. Other approaches are, therefore, needed to address a problem of finding proper targeted therapies. The analysis of RNA expression (transcriptomic) profiles presents a reasonable solution because transcriptomics stands a few steps closer to tumor phenotype than the genome analysis. Several recent studies pioneered using transcriptomics for practical oncology and showed truly encouraging clinical results. The possibility of directly measuring of expression levels of molecular drugs' targets and profiling activation of the relevant molecular pathways enables personalized prioritizing for all types of molecular-targeted therapies. RNA sequencing is the most robust tool for the high throughput quantitative transcriptomics. Its use, potentials, and limitations for the clinical oncology will be reviewed here along with the technical aspects such as optimal types of biosamples, RNA sequencing profile normalization, quality controls and several levels of data analysis.


Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de RNA , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Oncologia/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Prognóstico , Proteômica/métodos , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...