Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 369(26): 2504-14, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24369075

RESUMO

BACKGROUND: Severe combined immunodeficiency (SCID) comprises a heterogeneous group of heritable deficiencies of humoral and cell-mediated immunity. Many patients with SCID have lymphocyte-activation defects that remain uncharacterized. METHODS: We performed genetic studies in four patients, from four families of Northern Cree ancestry, who had clinical characteristics of SCID, including early onset of severe viral, bacterial, and fungal infections despite normal B-cell and T-cell counts. Genomewide homozygosity mapping was used to identify a candidate region, which was found on chromosome 8; all genes within this interval were sequenced. Immune-cell populations, signal transduction on activation, and effector functions were studied. RESULTS: The patients had hypogammaglobulinemia or agammaglobulinemia, and their peripheral-blood B cells and T cells were almost exclusively of naive phenotype. Regulatory T cells and γδ T cells were absent. All patients carried a homozygous duplication--c.1292dupG in exon 13 of IKBKB, which encodes IκB kinase 2 (IKK2, also known as IKKß)--leading to loss of expression of IKK2, a component of the IKK-nuclear factor κB (NF-κB) pathway. Immune cells from the patients had impaired responses to stimulation through T-cell receptors, B-cell receptors, toll-like receptors, inflammatory cytokine receptors, and mitogens. CONCLUSIONS: A form of human SCID is characterized by normal lymphocyte development despite a loss of IKK2 function. IKK2 deficiency results in an impaired response to activation stimuli in a variety of immune cells, leading to clinically relevant impairment of adaptive and innate immunity. Although Ikk2 deficiency is lethal in mouse embryos, our observations suggest a more restricted, unique role of IKK2-NF-κB signaling in humans. (Funded by the German Federal Ministry of Education and Research and others.).


Assuntos
Agamaglobulinemia/genética , Quinase I-kappa B/genética , Mutação , Imunodeficiência Combinada Severa/genética , Imunidade Adaptativa/genética , Linfócitos B/fisiologia , Evolução Fatal , Feminino , Genes Recessivos , Humanos , Quinase I-kappa B/deficiência , Imunidade Inata/genética , Indígenas Norte-Americanos , Lactente , Recém-Nascido , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Linhagem , Análise de Sequência de DNA , Linfócitos T/fisiologia
2.
Am J Hum Genet ; 88(2): 226-31, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21310277

RESUMO

The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.


Assuntos
Anemia Megaloblástica/genética , Deficiência de Ácido Fólico/diagnóstico , Mutação/genética , Doenças do Sistema Nervoso/genética , Tetra-Hidrofolato Desidrogenase/deficiência , Tetra-Hidrofolato Desidrogenase/genética , Anemia Megaloblástica/diagnóstico , Criança , Pré-Escolar , Eritrócitos/metabolismo , Feminino , Fluoresceínas/metabolismo , Ácido Fólico/sangue , Ácido Fólico/líquido cefalorraquidiano , Deficiência de Ácido Fólico/sangue , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Homozigoto , Humanos , Masculino , Metotrexato/análogos & derivados , Metotrexato/metabolismo , Modelos Moleculares , Doenças do Sistema Nervoso/diagnóstico , Linhagem , Conformação Proteica , Tetra-Hidrofolato Desidrogenase/química
3.
Hum Mutat ; 31(2): 197-207, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19953608

RESUMO

The nuclease ARTEMIS is an essential factor of V(D)J recombination during lymphocyte development and in the repair of DNA double-strand breaks (DSB) by the nonhomologous end joining (NHEJ) pathway. Patients with mutations in the DCLRE1C gene, which encodes ARTEMIS, suffer from radiosensitive B(-/low) T(-/low) severe combined immunodeficiency (SCID) or radiosensitive Omenn syndrome. To date, causative DCLRE1C mutations inherited as a recessive trait have been reported in 49 patients. In this study, molecular diagnoses of 29 novel patients presenting with the phenotype of B(-/low) SCID revealed mutations in the DCLRE1C gene. In total, 13 different mutated DCLRE1C alleles were detected, nine of which have not been described before. By far the most frequent mutations (59%) were gross deletions of exons 1-3 or exons 1-4 due to a homologous recombination of the wild-type DCLRE1C gene with a pseudo-DCLRE1C gene located 61.2 kb 5' to the DCLRE1C start codon. Fine mapping of the recombination intervals revealed private mutations in most cases. MEIG1, a gene encoding a protein that is essential for spermatogenesis in mice, is lost by the gross deletions. Functional analyses on patients' fibroblasts demonstrated that the corresponding alleles carry null mutations of the DCLRE1C gene.


Assuntos
Mutação/genética , Proteínas Nucleares/genética , Recombinação Genética/genética , Linfócitos B/patologia , Bioensaio , Células Cultivadas , Proteínas de Ligação a DNA , Endonucleases , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância a Radiação/genética , Deleção de Sequência/genética , Imunodeficiência Combinada Severa/genética , Éxons VDJ/genética
4.
Nat Genet ; 41(1): 101-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19043417

RESUMO

Human severe combined immunodeficiencies (SCID) are phenotypically and genotypically heterogeneous diseases. Reticular dysgenesis is the most severe form of inborn SCID. It is characterized by absence of granulocytes and almost complete deficiency of lymphocytes in peripheral blood, hypoplasia of the thymus and secondary lymphoid organs, and lack of innate and adaptive humoral and cellular immune functions, leading to fatal septicemia within days after birth. In bone marrow of individuals with reticular dysgenesis, myeloid differentiation is blocked at the promyelocytic stage, whereas erythro- and megakaryocytic maturation is generally normal. These features exclude a defect in hematopoietic stem cells but point to a unique aberration of the myelo-lymphoid lineages. The dramatic clinical course of reticular dysgenesis and its unique hematological phenotype have spurred interest in the unknown genetic basis of this syndrome. Here we show that the gene encoding the mitochondrial energy metabolism enzyme adenylate kinase 2 (AK2) is mutated in individuals with reticular dysgenesis. Knockdown of zebrafish ak2 also leads to aberrant leukocyte development, stressing the evolutionarily conserved role of AK2. Our results provide in vivo evidence for AK2 selectivity in leukocyte differentiation. These observations suggest that reticular dysgenesis is the first example of a human immunodeficiency syndrome that is causally linked to energy metabolism and that can therefore be classified as a mitochondriopathy.


Assuntos
Adenilato Quinase/genética , Isoenzimas/genética , Mitocôndrias/enzimologia , Mutação/genética , Imunodeficiência Combinada Severa/enzimologia , Imunodeficiência Combinada Severa/genética , Peixe-Zebra/genética , Adenilato Quinase/metabolismo , Animais , Apoptose , Células da Medula Óssea/enzimologia , Células da Medula Óssea/patologia , Linhagem Celular , Embrião não Mamífero/enzimologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/metabolismo , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/patologia , Masculino , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...