Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38366196

RESUMO

PURPOSE: We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS: Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS: In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (ß = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (ß = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (ß = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION: Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.

2.
Mov Disord ; 38(10): 1901-1913, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37655363

RESUMO

BACKGROUND: To date, studies on positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). OBJECTIVES: To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. METHODS: This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. RESULTS: Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. CONCLUSIONS: Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico
3.
Brain Commun ; 5(2): fcad070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006332

RESUMO

Motor learning is defined as an improvement in performance through practice. The ability to learn new motor skills may be particularly challenged in patients with Parkinson's disease, in whom motor execution is impaired by the disease-defining motor symptoms such as bradykinesia. Subthalamic deep brain stimulation is an effective treatment in advanced Parkinson's disease, and its beneficial effects on Parkinsonian motor symptoms and motor execution have been widely demonstrated. Much less is known about whether deep brain stimulation directly interacts with motor learning independent of modulation of motor execution. We investigated motor sequence learning in 19 patients with Parkinson's disease treated with subthalamic deep brain stimulation and 19 age-matched controls. In a cross-over design, patients performed an initial motor sequence training session with active and inactive stimulation, respectively (experiments separated by ≥14 days). Performance was retested after 5 min and after a 6 h consolidation interval with active stimulation. Healthy controls performed a similar experiment once. We further investigated neural correlates underlying stimulation-related effects on motor learning by exploring the association of normative subthalamic deep brain stimulation functional connectivity profiles with stimulation-related differences in performance gains during training. Pausing deep brain stimulation during initial training resulted in the inhibition of performance gains that could have been indicative of learning at the behavioural level. Task performance improved significantly during training with active deep brain stimulation, but did not reach the level of learning dynamics of healthy controls. Importantly, task performance after the 6 h consolidation interval was similar across patients with Parkinson's disease independent of whether the initial training session had been performed with active or inactive deep brain stimulation. This indicates that early learning and subsequent consolidation were relatively intact despite severe impairments of motor execution during training with inactive deep brain stimulation. Normative connectivity analyses revealed plausible and significant connectivity of volumes of tissue activated by deep brain stimulation with several cortical areas. However, no specific connectivity profiles were associated with stimulation-dependent differences in learning during initial training. Our results show that motor learning in Parkinson's disease is independent of modulation of motor execution by subthalamic deep brain stimulation. This indicates an important role of the subthalamic nucleus in regulating general motor execution, whereas its role in motor learning appears negligible. Because longer-term outcomes were independent of performance gains during initial training, patients with Parkinson's disease may not need to wait for an optimal motor state to practice new motor skills.

4.
Cerebellum ; 22(5): 925-937, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085397

RESUMO

Essential tremor (ET) is a progressive movement disorder whose pathophysiology is not fully understood. Current evidence supports the view that the cerebellum is critically involved in the genesis of the tremor in ET. However, it is still unknown whether cerebellar dysfunction affects not only the control of current movements but also the prediction of future movements through dynamic adaptation toward a changed environment. Here, we tested the capacity of 28 patients with ET to adapt in a visuomotor adaptation task known to depend on intact cerebellar function. We found specific impairments in that task compared to age-matched healthy controls. Adaptation to the visual perturbation was disrupted in ET patients, while de-adaptation, the phase after abrupt removal of the perturbation, developed similarly to control subjects. Baseline tremor-independent motor performance was as well similar to healthy controls, indicating that adaptation deficits in ET patients were not rooted in an inability to perform goal-directed movements. There was no association between clinical severity scores of ET and early visuomotor adaptation abilities. These results provide further evidence that the cerebellum is dysfunctional in ET.


Assuntos
Tremor Essencial , Humanos , Desempenho Psicomotor/fisiologia , Tremor , Cerebelo/fisiologia , Movimento/fisiologia , Adaptação Fisiológica/fisiologia
5.
Eur J Nucl Med Mol Imaging ; 50(2): 423-434, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102964

RESUMO

PURPOSE: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.


Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Paralisia Supranuclear Progressiva , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Atividades Cotidianas , Doença de Alzheimer/complicações , Degeneração Corticobasal/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/diagnóstico por imagem
6.
J Neurophysiol ; 127(6): 1606-1621, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544757

RESUMO

Bradykinesia is a cardinal motor symptom in Parkinson's disease (PD), the pathophysiology of which is not fully understood. We analyzed the role of cross-frequency coupling of oscillatory cortical activity in motor impairment in patients with PD and healthy controls. High-density EEG signals were recorded during various motor activities and at rest. Patients performed a repetitive finger-pressing task normally, but were slower than controls during tapping. Phase-amplitude coupling (PAC) between ß (13-30 Hz) and broadband γ (50-150 Hz) was computed from individual EEG source signals in the premotor, primary motor, and primary somatosensory cortices, and the primary somatosensory complex. In all four regions, averaging the entire movement period resulted in higher PAC in patients than in controls for the resting condition and the pressing task (similar performance between groups). However, this was not the case for the tapping tasks where patients performed slower. This suggests the strength of state-related ß-γ PAC does not determine Parkinsonian bradykinesia. Examination of the dynamics of oscillatory EEG signals during motor transitions revealed a distinctive motif of PAC rise and decay around press onset. This pattern was also present at press offset and slow tapping onset, linking such idiosyncratic PAC changes to transitions between different movement states. The transition-related PAC modulation in patients was similar to controls in the pressing task but flattened during slow tapping, which related to normal and abnormal performance, respectively. These findings suggest that the dysfunctional evolution of neuronal population dynamics during movement execution is an important component of the pathophysiology of Parkinsonian bradykinesia.NEW & NOTEWORTHY Our findings using noninvasive EEG recordings provide evidence that PAC dynamics might play a role in the physiological cortical control of movement execution and may encode transitions between movement states. Results in patients with Parkinson's disease suggest that bradykinesia is related to a deficit of the dynamic regulation of PAC during movement execution rather than its absolute strength. Our findings may contribute to the development of a new concept of the pathophysiology of bradykinesia.


Assuntos
Doença de Parkinson , Dedos , Humanos , Hipocinesia/etiologia , Movimento/fisiologia
7.
J Nucl Med ; 63(11): 1754-1760, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35422444

RESUMO

Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy movement disorder that can be imaged by the 18F-labeled tau PET tracer 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine (18F-PI-2620). The in vivo diagnosis is currently established on clinical grounds and supported by midbrain atrophy estimation in structural MRI. Here, we investigate whether 18F-PI-2620 tau PET has the potential to improve the imaging diagnosis of PSP. Methods: In this multicenter observational study, dynamic (0-60 min after injection) 18F-PI-2620 PET and structural MRI data for 36 patients with PSP, 22 with PSP-Richardson syndrome, and 14 with a clinical phenotype other than Richardson syndrome (i.e., variant PSP) were analyzed along with data for 10 age-matched healthy controls (HCs). The PET data underwent kinetic modeling, which resulted in distribution volume ratio (DVR) images. These and the MR images were visually assessed by 3 masked experts for typical PSP signs. Furthermore, established midbrain atrophy parameters were measured in structural MR images, and regional DVRs were measured in typical tau-in-PSP target regions in the PET data. Results: Visual assessments discriminated PSP patients and HCs with an accuracy of 63% for MRI and 80% for the combination of MRI and 18F-PI-2620 PET. As compared with patients of the PSP-Richardson syndrome subgroup, those of the variant PSP subgroup profited more in terms of sensitivity from the addition of the visual 18F-PI-2620 PET to the visual MRI information (35% vs. 22%). In quantitative image evaluation, midbrain-to-pons area ratio and globus pallidus DVRs discriminated best between the PSP patients and HCs, with sensitivities and specificities of 83% and 90%, respectively, for MRI and 94% and 100%, respectively, for the combination of MRI and 18F-PI-2620 PET. The gain of sensitivity by adding 18F-PI-2620 PET to MRI data was more marked in clinically less affected patients than in more affected patients (37% vs. 19% for visual, and 16% vs. 12% for quantitative image evaluation). Conclusion: These results provide evidence for an improved imaging-based PSP diagnosis by adding 18F-PI-2620 tau PET to structural MRI. This approach seems to be particularly promising at earlier disease stages and could be of value both for improving early clinical PSP diagnosis and for enriching PSP cohorts for trials of disease-modifying drugs.


Assuntos
Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Proteínas tau , Imageamento por Ressonância Magnética/métodos , Atrofia
8.
Sci Rep ; 11(1): 24186, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921224

RESUMO

Motor skills are acquired and refined across alternating phases of practice (online) and subsequent consolidation in the absence of further skill execution (offline). Both stages of learning are sustained by dynamic interactions within a widespread motor learning network including the premotor and primary motor cortices. Here, we aimed to investigate the role of the dorsal premotor cortex (dPMC) and its interaction with the primary motor cortex (M1) during motor memory consolidation. Forty-eight healthy human participants (age 22.1 ± 3.1 years) were assigned to three different groups corresponding to either low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of left dPMC, rTMS of left M1, or sham rTMS. rTMS was applied immediately after explicit motor sequence training with the right hand. Motor evoked potentials were recorded before training and after rTMS to assess potential stimulation-induced changes in corticospinal excitability (CSE). Participants were retested on motor sequence performance after eight hours to assess consolidation. While rTMS of dPMC significantly increased CSE and rTMS of M1 significantly decreased CSE, no CSE modulation was induced by sham rTMS. However, all groups demonstrated similar significant offline learning indicating that consolidation was not modulated by the post-training low-frequency rTMS intervention despite evidence of an interaction of dPMC and M1 at the level of CSE. Motor memory consolidation ensuing explicit motor sequence training seems to be a rather robust process that is not affected by low-frequency rTMS-induced perturbations of dPMC or M1. Findings further indicate that consolidation of explicitly acquired motor skills is neither mediated nor reflected by post-training CSE.


Assuntos
Consolidação da Memória/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/estatística & dados numéricos , Adolescente , Adulto , Potencial Evocado Motor , Feminino , Humanos , Aprendizagem , Masculino , Memória , Modelos Estatísticos , Destreza Motora , Estimulação Magnética Transcraniana/psicologia
9.
Front Aging Neurosci ; 13: 685168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194317

RESUMO

Previous studies have shown that persons with Parkinson's disease (pwPD) share specific deficits in learning new sequential movements, but the neural substrates of this impairment remain unclear. In addition, the degree to which striatal dopaminergic denervation in PD affects the cortico-striato-thalamo-cerebellar motor learning network remains unknown. We aimed to answer these questions using fMRI in 16 pwPD and 16 healthy age-matched control subjects while they performed an implicit motor sequence learning task. While learning was absent in both pwPD and controls assessed with reaction time differences between sequential and random trials, larger error-rates during the latter suggest that at least some of the complex sequence was encoded. Moreover, we found that while healthy controls could improve general task performance indexed by decreased reaction times across both sequence and random blocks, pwPD could not, suggesting disease-specific deficits in learning of stimulus-response associations. Using fMRI, we found that this effect in pwPD was correlated with decreased activity in the hippocampus over time. Importantly, activity in the substantia nigra (SN) and adjacent bilateral midbrain was specifically increased during sequence learning in pwPD compared to healthy controls, and significantly correlated with sequence-specific learning deficits. As increased SN activity was also associated (on trend) with higher doses of dopaminergic medication as well as disease duration, the results suggest that learning deficits in PD are associated with disease progression, indexing an increased drive to recruit dopaminergic neurons in the SN, however, unsuccessfully. Finally, there were no differences between pwPD and controls in task modulation of the cortico-striato-thalamo-cerebellar network. However, a restricted nigral-striatal model showed that negative modulation of SN to putamen connection was larger in pwPD compared to controls during random trials, while no differences between the groups were found during sequence learning. We speculate that learning-specific SN recruitment leads to a relative increase in SN- > putamen connectivity, which returns to a pathological reduced state when no learning takes place.

10.
Neuropsychologia ; 159: 107921, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181927

RESUMO

Recent studies show that limb apraxia is a quite frequent, yet often underdiagnosed, higher motor impairment following stroke. Because it adversely affects every-day life and personal independence, successful rehabilitation of apraxia is essential for personal well-being. Nevertheless, evidence of long-term efficacy of training schemes and generalization to untrained actions is still scarce. One possible reason for the tendency of this neurological disorder to persist may be a deficit in planning, conceptualisation and storage of complex motor acts. This pilot study aims at investigating explicit motor learning in apractic stroke patients. In particular, we addressed the ability of apractic patients to learn and to retain new explicit sequential finger movements across 10 training sessions over a 3-week interval. Nine stroke patients with ideomotor apraxia in its chronic stage participated in a multi-session training regimen and were included in data analyses. Patients performed an explicit finger sequence learning task (MSLT - motor sequence learning task), which is a well-established paradigm to investigate motor learning and memory processes. Patients improved task performance in terms of speed and accuracy across sessions. Specifically, they showed a noticeable reduction in the mean time needed to perform a correct sequence and the number of erroneous sequences. We found also a trend for improved performance at the Goldenberg apraxia test protocol: "imitation of meaningless hand and finger gestures" relative to when assessed before the MSLT training. Patients with ideomotor apraxia demonstrated the ability to acquire and maintain a novel sequence of movements; and, this training was associated with hints towards improvement of apraxia symptoms.


Assuntos
Apraxia Ideomotora , Apraxias , Apraxias/etiologia , Gestos , Mãos , Humanos , Projetos Piloto
11.
J Cereb Blood Flow Metab ; 41(11): 2957-2972, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34044665

RESUMO

The novel tau-PET tracer [18F]PI-2620 detects the 3/4-repeat-(R)-tauopathy Alzheimer's disease (AD) and the 4R-tauopathies corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). We determined whether [18F]PI-2620 binding characteristics deriving from non-invasive reference tissue modelling differentiate 3/4R- and 4R-tauopathies. Ten patients with a 3/4R tauopathy (AD continuum) and 29 patients with a 4R tauopathy (CBS, PSP) were evaluated. [18F]PI-2620 PET scans were acquired 0-60 min p.i. and the distribution volume ratio (DVR) was calculated. [18F]PI-2620-positive clusters (DVR ≥ 2.5 SD vs. 11 healthy controls) were evaluated by non-invasive kinetic modelling. R1 (delivery), k2 & k2a (efflux), DVR, 30-60 min standardized-uptake-value-ratios (SUVR30-60) and the linear slope of post-perfusion phase SUVR (9-60 min p.i.) were compared between 3/4R- and 4R-tauopathies. Cortical clusters of 4R-tau cases indicated higher delivery (R1SRTM: 0.92 ± 0.21 vs. 0.83 ± 0.10, p = 0.0007), higher efflux (k2SRTM: 0.17/min ±0.21/min vs. 0.06/min ± 0.07/min, p < 0.0001), lower DVR (1.1 ± 0.1 vs. 1.4 ± 0.2, p < 0.0001), lower SUVR30-60 (1.3 ± 0.2 vs. 1.8 ± 0.3, p < 0.0001) and flatter slopes of the post-perfusion phase (slope9-60: 0.006/min ± 0.007/min vs. 0.016/min ± 0.008/min, p < 0.0001) when compared to 3/4R-tau cases. [18F]PI-2620 binding characteristics in cortical regions differentiate 3/4R- and 4R-tauopathies. Higher tracer clearance indicates less stable binding in 4R tauopathies when compared to 3/4R-tauopathies.


Assuntos
Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tauopatias/diagnóstico por imagem , Proteínas tau/análise , Radioisótopos de Flúor , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Isoformas de Proteínas/análise
12.
Eur J Nucl Med Mol Imaging ; 48(12): 3872-3885, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021393

RESUMO

PURPOSE: Dynamic 60-min positron emission tomography (PET) imaging with the novel tau radiotracer [18F]PI-2620 facilitated accurate discrimination between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs). This study investigated if truncated acquisition and static time windows can be used for [18F]PI-2620 tau-PET imaging of PSP. METHODS: Thirty-seven patients with PSP Richardson syndrome (PSP-RS) were evaluated together with ten HCs. [18F]PI-2620 PET was performed by a dynamic 60-min scan. Distribution volume ratios (DVRs) were calculated using full and truncated scan durations (0-60, 0-50, 0-40, 0-30, and 0-20 min p.i.). Standardized uptake value ratios (SUVrs) were obtained 20-40, 30-50, and 40-60 min p.i.. All DVR and SUVr data were compared with regard to their potential to discriminate patients with PSP-RS from HCs in predefined subcortical and cortical target regions (effect size, area under the curve (AUC), multi-region classifier). RESULTS: 0-50 and 0-40 DVR showed equivalent effect sizes as 0-60 DVR (averaged Cohen's d: 1.22 and 1.16 vs. 1.26), whereas the performance dropped for 0-30 or 0-20 DVR. The 20-40 SUVr indicated the best performance of all static acquisition windows (averaged Cohen's d: 0.99). The globus pallidus internus discriminated patients with PSP-RS and HCs at a similarly high level for 0-60 DVR (AUC: 0.96), 0-40 DVR (AUC: 0.96), and 20-40 SUVr (AUC: 0.94). The multi-region classifier sensitivity of these time windows was consistently 86%. CONCLUSION: Truncated and static imaging windows can be used for [18F]PI-2620 PET imaging of PSP. 0-40 min dynamic scanning offers the best balance between accuracy and economic scanning.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Estudos de Viabilidade , Humanos , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Proteínas tau
13.
Neural Plast ; 2021: 6696341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790962

RESUMO

Compared to relapsing-remitting multiple sclerosis (MS), progressive MS is characterized by a lack of spontaneous recovery and a poor response to pharmaceutical immunomodulatory treatment. These patients may, therefore, particularly benefit from interventions that augment training-induced plasticity of the central nervous system. In this cross-sectional double-blind cross-over pilot study, effects of transcranial direct current stimulation (tDCS) on motor sequence learning were examined across four sessions on days 1, 3, 5, and 8 in 16 patients with progressive MS. Active or sham anodal tDCS of the primary motor cortex was applied immediately after each training session. Participants took part in two experiments separated by at least four weeks, which differed with respect to the type of posttraining tDCS (active or sham). While task performance across blocks of training and across sessions improved significantly in both the active and sham tDCS experiment, neither online nor offline motor learning was modulated by the type of tDCS. Accordingly, the primary endpoint (task performance on day 8) did not differ between stimulation conditions. In sum, patients with progressive MS are able to improve performance in an ecologically valid motor sequence learning task through training. However, even multisession posttraining tDCS fails to promote motor learning in progressive MS.


Assuntos
Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Destreza Motora/fisiologia , Esclerose Múltipla Crônica Progressiva/terapia , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Estudos Cross-Over , Estudos Transversais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Esclerose Múltipla Crônica Progressiva/psicologia , Projetos Piloto
14.
Brain ; 144(2): 487-503, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33257940

RESUMO

Abnormal phase-amplitude coupling between ß and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. ß and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the ß and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between ß and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.


Assuntos
Ritmo beta , Córtex Cerebral/fisiopatologia , Ritmo Gama , Doença de Parkinson/fisiopatologia , Adulto , Idoso , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Couro Cabeludo , Processamento de Sinais Assistido por Computador
15.
JAMA Neurol ; 77(11): 1408-1419, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165511

RESUMO

Importance: Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy. Region-specific tau aggregates establish the neuropathologic diagnosis of definite PSP post mortem. Future interventional trials against tau in PSP would strongly benefit from biomarkers that support diagnosis. Objective: To investigate the potential of the novel tau radiotracer 18F-PI-2620 as a biomarker in patients with clinically diagnosed PSP. Design, Setting, and Participants: In this cross-sectional study, participants underwent dynamic 18F-PI-2620 positron emission tomography (PET) from 0 to 60 minutes after injection at 5 different centers (3 in Germany, 1 in the US, and 1 in Australia). Patients with PSP (including those with Richardson syndrome [RS]) according to Movement Disorder Society PSP criteria were examined together with healthy controls and controls with disease. Four additionally referred individuals with PSP-RS and 2 with PSP-non-RS were excluded from final data analysis owing to incomplete dynamic PET scans. Data were collected from December 2016 to October 2019 and were analyzed from December 2018 to December 2019. Main Outcomes and Measures: Postmortem autoradiography was performed in independent PSP-RS and healthy control samples. By in vivo PET imaging, 18F-PI-2620 distribution volume ratios were obtained in globus pallidus internus and externus, putamen, subthalamic nucleus, substantia nigra, dorsal midbrain, dentate nucleus, dorsolateral, and medial prefrontal cortex. PET data were compared between patients with PSP and control groups and were corrected for center, age, and sex. Results: Of 60 patients with PSP, 40 (66.7%) had RS (22 men [55.0%]; mean [SD] age, 71 [6] years; mean [SD] PSP rating scale score, 38 [15]; score range, 13-71) and 20 (33.3%) had PSP-non-RS (11 men [55.0%]; mean [SD] age, 71 [9] years; mean [SD] PSP rating scale score, 24 [11]; score range, 11-41). Ten healthy controls (2 men; mean [SD] age, 67 [7] years) and 20 controls with disease (of 10 [50.0%] with Parkinson disease and multiple system atrophy, 7 were men; mean [SD] age, 61 [8] years; of 10 [50.0%] with Alzheimer disease, 5 were men; mean [SD] age, 69 [10] years). Postmortem autoradiography showed blockable 18F-PI-2620 binding in patients with PSP and no binding in healthy controls. The in vivo findings from the first large-scale observational study in PSP with 18F-PI-2620 indicated significant elevation of tracer binding in PSP target regions with strongest differences in PSP vs control groups in the globus pallidus internus (mean [SD] distribution volume ratios: PSP-RS, 1.21 [0.10]; PSP-non-RS, 1.12 [0.11]; healthy controls, 1.00 [0.08]; Parkinson disease/multiple system atrophy, 1.03 [0.05]; Alzheimer disease, 1.08 [0.06]). Sensitivity and specificity for detection of PSP-RS vs any control group were 85% and 77%, respectively, when using classification by at least 1 positive target region. Conclusions and Relevance: This multicenter evaluation indicates a value of 18F-PI-2620 to differentiate suspected patients with PSP, potentially facilitating more reliable diagnosis of PSP.


Assuntos
Radioisótopos de Flúor/farmacocinética , Substância Cinzenta/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/normas , Piridinas/farmacocinética , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Proteínas tau/metabolismo , Idoso , Biomarcadores/metabolismo , Estudos Transversais , Diagnóstico , Feminino , Substância Cinzenta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Paralisia Supranuclear Progressiva/metabolismo
16.
Neuroimage ; 223: 117323, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882377

RESUMO

Previous research has consistently demonstrated that older adults have difficulties transforming recently learned movements into robust, long-lasting memories (i.e., motor memory consolidation). One potential avenue to enhance consolidation in older individuals is the administration of transcranial direct current stimulation (tDCS) to task-relevant brain regions after initial learning. Although this approach has shown promise, the underlying cerebral correlates have yet to be revealed. Moreover, it is unknown whether the effects of tDCS are lateralized, an open question with implications for rehabilitative approaches following predominantly unilateral neurological injuries. In this research, healthy older adults completed a sequential motor task before and 6 h after receiving anodal or sham stimulation to right or left primary motor cortex (M1) while functional magnetic resonance images were acquired. Unexpectedly, anodal stimulation to right M1 following left-hand sequence learning significantly hindered consolidation as compared to a sham control, whereas no differences were observed with left M1 stimulation following right-hand learning. Impaired performance following right M1 stimulation was paralleled by sustained engagement of regions known to be critical for early learning stages, including the caudate nucleus and the premotor and parietal cortices. Thus, post-learning tDCS in older adults not only exerts heterogenous effects across the two hemispheres but can also disrupt ongoing memory processing.


Assuntos
Lateralidade Funcional , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Idoso , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Movimento
17.
Parkinsonism Relat Disord ; 80: 82-88, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32971383

RESUMO

BACKGROUND: Neuronal alpha-synuclein (α-Syn) aggregation in the brain is believed to be a central component of the pathogenesis of Parkinson's disease (PD). α-Syn aggregates in the gastrointestinal tract have been suggested as a potential biomarker of PD that may even signal an early event of the Parkinsonian molecular pathology. However, studies further investigating this hypothesis have produced mixed results. OBJECTIVE: To determine whether the prevalence of α-Syn- and serine 129-phosphorylated α-Syn (Ser129p-α-Syn) depositions detected in intestine from PD patients differed from that of non-Parkinsonian controls. METHODS: In this retrospective study, we examined post-mortem small and large intestine samples of 25 PD patients and 20 age- and sex-matched controls without PD. Specimens were taken from archived paraffin-embedded tissue blocks. Immunohistochemical techniques were applied to detect α-Syn and Ser129p-α-Syn aggregates in situ. Immunoreactivity was quantified by a new approach that employed the detailed assessment of α-Syn- and Ser129p-α-Syn-positive morphological structures of the enteric nervous system (i.e., nerve fibers, myenteric and submucous plexus as well as ganglion cells). RESULTS: α-Syn immunoreactivity was a common finding in intestinal tissues from PD patients and controls. Importantly, α-Syn and Ser129p-α-Syn immunoreactivity were significantly reduced in PD patients compared to controls in each of the morphological structures examined. CONCLUSIONS: Immunohistochemical detection of intestinal α-Syn and Ser129p-α-Syn seems to be a frequent and potentially normal finding. Neither α-Syn nor Ser129p-α-Syn immunoreactivity may, therefore, be regarded as a molecular intestinal biomarker of PD pathology. Reduced intestinal α-Syn and Ser129p-α-Syn immunoreactivity in PD patients rather reflect PD-related neuronal degeneration.


Assuntos
Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Biomarcadores/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Estudos Retrospectivos
18.
Hum Brain Mapp ; 41(13): 3680-3695, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583940

RESUMO

Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.


Assuntos
Envelhecimento/fisiologia , Conectoma , Espectroscopia de Ressonância Magnética , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Sensório-Motor/fisiologia , Aprendizagem Seriada/fisiologia , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/metabolismo , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/metabolismo
19.
Eur J Nucl Med Mol Imaging ; 47(12): 2911-2922, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32318783

RESUMO

PURPOSE: Second-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several ß-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG). METHODS: Twenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson's disease, multi-system atrophy, Parkinson's disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0-60 min p.i.) and static [18F]FDG-PET (30-50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers. RESULTS: Highest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5-2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers. CONCLUSION: Early-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury.


Assuntos
Doença de Alzheimer , Tomografia Computadorizada por Raios X , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons
20.
Neurocrit Care ; 33(3): 708-717, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32198728

RESUMO

BACKGROUND/OBJECTIVE: Delirium is a common complication in critically ill patients with a negative impact on hospital length of stay, morbidity, and mortality. Little is known on how neurological deficits affect the outcome of commonly used delirium screening tools such as the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and the Intensive Care Delirium Screening Checklist (ICDSC) in neurocritical care patients. METHODS: Over a period of 1 month, all patients admitted to a neurocritical care and stroke unit at a single academic center were prospectively screened for delirium using both CAM-ICU and ICDSC. Tool-based delirium screening was compared with delirium evaluation by the treating clinical team. Additionally, ICD-10 delirium criteria were assessed. RESULTS: One hundred twenty-three patients with a total of 644 daily screenings were included. Twenty-three patients (18.7%) were diagnosed with delirium according to the clinical evaluation. Delirium incidence amounted to 23.6% (CAM-ICU) and 26.8% (ICDSC). Sensitivity and specificity of both screening tools were 66.9% and 93.3% for CAM-ICU and 69.9% and 93.9% for ICDSC, respectively. Patients identified with delirium by either CAM-ICU or ICDSC presented a higher proportion of neurological deficits such as impaired consciousness, expressive aphasia, impaired language comprehension, and hemineglect. Subsequently, generalized estimating equations identified a significant association between impaired consciousness (as indexed by Richmond Agitation and Sedation Scale) and a positive delirium assessment with both CAM-ICU and ICDSC, while impaired language comprehension and hemineglect were only associated with a positive CAM-ICU result. CONCLUSIONS: A positive delirium screening with both CAM-ICU and ICDSC in neurocritical care and stroke unit patients was found to be significantly associated with the presence of neurological deficits. These findings underline the need for a more specific delirium screening tool in neurocritical care patients.


Assuntos
Delírio , Acidente Vascular Cerebral , Lista de Checagem , Cuidados Críticos , Delírio/diagnóstico , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Projetos Piloto , Prognóstico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...