Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 6(8): e23646, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21901125

RESUMO

OBJECTIVES: The effects of AT1 receptor blocker, telmisartan, and the ACE inhibitor, ramipril, were tested head-to head and in combination on stroke prevention in hypertensive rats and on potential neuroprotection in acute cerebral ischemia in normotensive rats. METHODS: Prevention study: Stroke-prone spontaneously hypertensive rats (SHR-SP) were subjected to high salt and randomly assigned to 4 groups: (1) untreated (NaCl, n = 24), (2) telmisartan (T; n = 27), (3) ramipril (R; n = 27) and (4) telmisartan + ramipril (T+R; n = 26). Drug doses were selected to keep blood pressure (BP) at 150 mmHg in all groups. Neurological signs and stroke incidence at 50% mortality of untreated SHR-SP were investigated. Intervention study: Normotensive Wistar rats were treated s.c. 5 days prior to middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Groups (n = 10 each): (1) sham, (2) vehicle (V; 0.9% NaCl), (3) T (0.5 mg/kg once daily), (4) R (0.01 mg/kg twice daily), (5) R (0.1 mg/kg twice daily) or (6) T (0.5 mg/kg once daily) plus R (0.01 mg/kg twice daily). Twenty-four and 48 h after MCAO, neurological outcome (NO) was determined. Forty-eight h after MCAO, infarct volume by MRI, neuronal survival, inflammation factors and neurotrophin receptor (TrkB) were analysed. RESULTS: Stroke incidence was reduced, survival was prolonged and neurological outcome was improved in all treated SHR-SP with no differences between treated groups. In the acute intervention study, T and T+R, but not R alone, improved NO, reduced infarct volume, inflammation (TNFα), and induced TrkB receptor and neuronal survival in comparison to V. CONCLUSIONS: T, R or T+R had similar beneficial effects on stroke incidence and NO in hypertensive rats, confirming BP reduction as determinant factor in stroke prevention. In contrast, T and T+R provided superior neuroprotection in comparison to R alone in normotensive rats with induced cerebral ischemia.


Assuntos
Anti-Hipertensivos/uso terapêutico , Benzimidazóis/uso terapêutico , Benzoatos/uso terapêutico , Ramipril/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Telmisartan
2.
J Hypertens ; 26(12): 2426-35, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19008722

RESUMO

OBJECTIVE: Ceftriaxone has been reported to reduce neuronal damage in amyotrophic lateral sclerosis and in an in-vitro model of neuronal ischaemia through increased expression and activity of the glutamate transporter, GLT1. We tested the effects of ceftriaxone on mortality, neurological outcome, and infarct size in experimental stroke in rats and looked for underlying mechanisms. METHODS: Male normotensive Wistar rats received ceftriaxone (200 mg/kg intraperitoneal) as a single injection 90 min after middle cerebral artery occlusion (90 min with reperfusion). Forty-eight hours after middle cerebral artery occlusion, infarct size (MRI) and neurological deficits were estimated. GLT1 expression was determined by real time RT-PCR, immunoblotting and promoter reporter assay, astrocyte GLT1 activity by measuring glutamate uptake. Bacterial load in various organs was measured by real time RT-PCR, neurotrophins and IL-6 by immunoblotting. RESULTS: Ceftriaxone dramatically reduced early (24-h) mortality from 34.5% (vehicle treatment, n = 29) to 0% (P < 0.01, n = 19). In a subgroup, followed up for 4 weeks, mortality persisted at 0%. Ceftriaxone strongly tended to reduce infarct size, it significantly improved neuronal survival within the penumbra, reduced neurological deficits (P < 0.001) and led to an upregulation of neurotrophins (P < 0.01) in the peri-infarct zone. Ceftriaxone did not increase GLT1 expression, but increased GLT1 activity (P < 0.05). CONCLUSION: Ceftriaxone causes a significant reduction in acute stroke mortality in a poststroke treatment regimen in animal studies. Improved neurological performance and survival may be due to neuroprotection by activation of GLT1 and a stimulation of neurotrophins resulting in an increased number of surviving neurons in the penumbra.


Assuntos
Antibacterianos/farmacologia , Ceftriaxona/farmacologia , Ácido Glutâmico/metabolismo , Fatores de Crescimento Neural/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/mortalidade , Animais , Temperatura Corporal/fisiologia , Encéfalo/irrigação sanguínea , Infarto Encefálico/patologia , Transtornos Cerebrovasculares/complicações , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Interleucina-6/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Acidente Vascular Cerebral/etiologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA