Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 16(6): 987-1001, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967488

RESUMO

The objective of the current study was to identify potential drug-drug interactions (DDIs) with the drug candidate fb-PMT, a novel anticancer thyrointegrin αvß3 antagonist. This was accomplished by using several in vitro assays to study interactions of fb-PMT with both cytochrome P450 (CYP) enzymes and drug transporters, two common mechanisms leading to adverse drug effects. In vitro experiments showed that fb-PMT exhibited weak reversible inhibition of CYP2C19 and CYP3A4. In addition, fb-PMT did not show time-dependent inhibition with any of the seven CYP isoforms tested, including 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4. Human liver microsomal incubations demonstrated that fb-PMT is stable. Potential transporter-mediated DDIs with fb-PMT were assessed with two ATP binding cassette (ABC) family transporters (P-glycoprotein and breast cancer resistance protein) using Caco2 cells and seven solute carrier family (SLC) transporters (organic cation transporter OCT2, organic anion transporters OAT1 and OAT3, organic anion transporter peptides OATP1B1 and OATP1B3, and the multidrug and toxic extrusion proteins MATE1 and MATE2-K using transfected HEK293 cells). Fb-PMT was not a substrate for any of the nine transporters tested in this study, nor did it inhibit the activity of seven of the transporters tested. However, fb-PMT inhibited the uptake of rosuvastatin by both OATP1B1 and OATP1B3 with half-maximal inhibitory concentrations greater than 3 and less than 10 µM. In summary, data suggest that the systemic administration of fb-PMT is unlikely to lead to DDIs through CYP enzymes or ABC and SLC transporters in humans.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Interações Medicamentosas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
2.
Science ; 360(6386): 336-341, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674596

RESUMO

Mitofusins (MFNs) promote fusion-mediated mitochondrial content exchange and subcellular trafficking. Mutations in Mfn2 cause neurodegenerative Charcot-Marie-Tooth disease type 2A (CMT2A). We showed that MFN2 activity can be determined by Met376 and His380 interactions with Asp725 and Leu727 and controlled by PINK1 kinase-mediated phosphorylation of adjacent MFN2 Ser378 Small-molecule mimics of the peptide-peptide interface of MFN2 disrupted this interaction, allosterically activating MFN2 and promoting mitochondrial fusion. These first-in-class mitofusin agonists overcame dominant mitochondrial defects provoked in cultured neurons by CMT2A mutants MFN2 Arg94→Gln94 and MFN2 Thr105→Met105, as demonstrated by amelioration of mitochondrial dysmotility, fragmentation, depolarization, and clumping. A mitofusin agonist normalized axonal mitochondrial trafficking within sciatic nerves of MFN2 Thr105→Met105 mice, promising a therapeutic approach for CMT2A and other untreatable diseases of impaired neuronal mitochondrial dynamism and/or trafficking.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Desenho de Fármacos , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Proteínas Mitocondriais/agonistas , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Substituição de Aminoácidos , Animais , Arginina/genética , Axônios/efeitos dos fármacos , Axônios/fisiologia , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Glutamina/genética , Humanos , Metionina/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Fosforilação , Proteínas Quinases/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiopatologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Treonina/genética
3.
Mol Cell Proteomics ; 14(12): 3224-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26472727

RESUMO

Improved diagnostic methods are needed to support ongoing efforts to eliminate onchocerciasis (river blindness). This study used an integrated approach to identify adult female Onchocerca volvulus antigens that can be explored for developing serodiagnostic tests. The first step was to develop a detailed multi-omics database of all O. volvulus proteins deduced from the genome, gene transcription data for different stages of the parasite including eight individual female worms (providing gene expression information for 94.8% of all protein coding genes), and the adult female worm proteome (detecting 2126 proteins). Next, female worm proteins were purified with IgG antibodies from onchocerciasis patients and identified using LC-MS with a high-resolution hybrid quadrupole-time-of-flight mass spectrometer. A total of 241 immunoreactive proteins were identified among those bound by IgG from infected individuals but not IgG from uninfected controls. These included most of the major diagnostic antigens described over the past 25 years plus many new candidates. Proteins of interest were prioritized for further study based on a lack of conservation with orthologs in the human host and other helminthes, their expression pattern across the life cycle, and their consistent expression among individual female worms. Based on these criteria, we selected 33 proteins that should be carried forward for testing as serodiagnostic antigens to supplement existing diagnostic tools. These candidates, together with the extensive pan-omics dataset generated in this study are available to the community (http://nematode.net) to facilitate basic and translational research on onchocerciasis.


Assuntos
Antígenos de Helmintos/isolamento & purificação , Genômica/métodos , Imunoglobulina G/metabolismo , Onchocerca volvulus/imunologia , Oncocercose/diagnóstico , Animais , Antígenos de Helmintos/genética , Antígenos de Helmintos/metabolismo , Bases de Dados Genéticas , Diagnóstico Precoce , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Onchocerca volvulus/genética , Oncocercose/imunologia , Testes Sorológicos
4.
Bioorg Med Chem Lett ; 21(21): 6348-52, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21955943

RESUMO

We describe the design, synthesis and profiling of a novel series of PDE5 inhibitors. We take advantage of an alternate projection into the solvent region to identify compounds with excellent potency, selectivity and pharmacokinetic profiles.


Assuntos
Inibidores da Fosfodiesterase 5/farmacologia , Pirazinas/farmacologia , Cristalografia por Raios X , Concentração Inibidora 50 , Modelos Moleculares , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Pirazinas/química , Pirazinas/farmacocinética , Solventes/química
5.
J Med Chem ; 53(6): 2656-60, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20196613

RESUMO

We recently described a novel series of aminopyridopyrazinones as PDE5 inhibitors. Efforts toward optimization of this series culminated in the identification of 3-[4-(2-hydroxyethyl)piperazin-1-yl]-7-(6-methoxypyridin-3-yl)-1-(2-propoxyethyl)pyrido[3,4-b]pyrazin-2(1H)-one, which possessed an excellent potency and selectivity profile and demonstrated robust in vivo blood pressure lowering in a spontaneously hypertensive rat (SHR) model. Furthermore, this compound is brain penetrant and will be a useful agent for evaluating the therapeutic potential of central inhibition of PDE5. This compound has recently entered clinical trials.


Assuntos
Encéfalo/metabolismo , Inibidores da Fosfodiesterase 5 , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Pirazinas/síntese química , Pirazinas/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Pressão Sanguínea/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Masculino , Modelos Químicos , Estrutura Molecular , Inibidores de Fosfodiesterase/farmacocinética , Pirazinas/farmacocinética , Piridinas/farmacocinética , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
6.
Bioorg Med Chem Lett ; 19(17): 5209-13, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19631533
7.
Bioorg Med Chem Lett ; 19(15): 4092-6, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19539468
8.
Chem Res Toxicol ; 21(5): 1125-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18407675

RESUMO

PH-302 ( 1) demonstrates potent inhibitory activity against the inducible form of nitric oxide synthase (iNOS). The primary metabolite of PH-302 is a catechol ( 2) resulting from oxidative demethylenation of the methylenedioxyphenyl moiety by cytochrome P450 3A4. Concerns regarding subsequent two-electron oxidation of 2 to an electrophilic quinone species and the potential for resulting toxicity prompted additional studies to examine the reactivity and metabolic fate of this metabolite. Contrary to literature reports of catechol reactivity, 2 appeared to be resistant to quinone formation in human liver microsomal incubations, as determined by the lack of detectable glutathione (GSH) adducts and no covalent binding to microsomal proteins. In addition, 2 showed no evidence of depletion of intracellular glutathione or cytotoxicity at concentrations up to 1 mM in primary human and rat hepatocytes. In the presence of tyrosinase, spectral evidence indicated that 2 was oxidized to the ortho-quinone, and upon incubation in the presence of GSH, two conjugates were detected and characterized by LC/MS/MS. Lastly, the metabolic pathways of 2 were investigated in rat and human hepatocytes and found to be similar, proceeding via glucuronidation, sulfation, and methylation of the catechol. Collectively, these studies demonstrate that 2 appears to be resistant to further oxidation to quinone in liver microsomes, as well as spontaneous redox cycling, while the formation of phase II metabolites in hepatocytes suggests that multiple detoxication pathways may provide added protection against toxicity in the liver.


Assuntos
Catecóis/metabolismo , Animais , Catecóis/química , Catecóis/toxicidade , Células Cultivadas , Glutationa/química , Hepatócitos/efeitos dos fármacos , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Ratos
9.
Chem Res Toxicol ; 19(12): 1650-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17173379

RESUMO

PH-302 inhibits the inducible form of nitric oxide synthase (iNOS) by coordinating with the heme of the monomeric form and preventing formation of the active dimer. Inherent with the mechanism of pharmacology for this compound was the inhibition of cytochrome P450 3A4 (P450 3A4), observed from early ADME screening. Further investigation showed that PH-302 inhibited P450 3A4 competitively with a Ki of approximately 2.0 microM against both midazolam and testosterone hydroxylation in human liver microsomes. As expected, spectral binding analysis demonstrated that inhibition was a result of type II coordination to the P450 heme with the imidazole moiety of PH-302, although only 72% of the maximal absorbance difference was achievable with PH-302 compared to that of the smaller ligand imidazole. Time-dependent inhibition of P450 3A4 by PH-302 was also observed because of metabolite-inhibitory (MI) complex formation via metabolism of the methylenedioxyphenyl group. The profile for time-dependent inhibition in recombinant P450 3A4 was biphasic, and was kinetically characterized by a kinact of 0.08 min-1 and a Ki of 1.2 microM for the first phase (0-1.5 min) and a kinact of 0.06 min-1 and a Ki of 23.8 microM for the second phase (1.5-10 min). Spectral characterization of the PH-302 MI complex demonstrated that formation began to plateau within 3 min, consistent with the kinetic profile of inactivation by PH-302. Meanwhile, spectral evidence for the imidazole-derived type II difference spectrum of PH-302 was captured simultaneously with the formation of the MI complex. The presence of simultaneously operable type II coordination and rapidly saturable MI complex formation with heme by PH-302 indicates the presence of complex heme interactions with this unique molecule. Information from these mechanistic studies adds to our understanding of the nature of P450 3A4 inhibition by PH-302 and provides a potentially useful tool compound for future studies investigating binding interactions in this important drug-metabolizing enzyme.


Assuntos
Benzodioxóis/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Heme/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Pirimidinas/farmacologia , Benzodioxóis/química , Benzodioxóis/metabolismo , Cromatografia Líquida , Citocromo P-450 CYP3A , Interações Medicamentosas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Técnicas In Vitro , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Ligação Proteica , Pirimidinas/química , Pirimidinas/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...