Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 46, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639420

RESUMO

The prospect of continued manned space missions warrants an in-depth understanding of how prolonged microgravity affects the human brain. Functional magnetic resonance imaging (fMRI) can pinpoint changes reflecting adaptive neuroplasticity across time. We acquired resting-state fMRI data of cosmonauts before, shortly after, and eight months after spaceflight as a follow-up to assess global connectivity changes over time. Our results show persisting connectivity decreases in posterior cingulate cortex and thalamus and persisting increases in the right angular gyrus. Connectivity in the bilateral insular cortex decreased after spaceflight, which reversed at follow-up. No significant connectivity changes across eight months were found in a matched control group. Overall, we show that altered gravitational environments influence functional connectivity longitudinally in multimodal brain hubs, reflecting adaptations to unfamiliar and conflicting sensory input in microgravity. These results provide insights into brain functional modifications occurring during spaceflight, and their further development when back on Earth.


Assuntos
Ausência de Peso , Humanos , Encéfalo/diagnóstico por imagem , Giro do Cíngulo , Imageamento por Ressonância Magnética/métodos , Lobo Parietal
2.
Proc Natl Acad Sci U S A ; 119(17): e2120439119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412862

RESUMO

Long-duration spaceflight induces changes to the brain and cerebrospinal fluid compartments and visual acuity problems known as spaceflight-associated neuro-ocular syndrome (SANS). The clinical relevance of these changes and whether they equally affect crews of different space agencies remain unknown. We used MRI to analyze the alterations occurring in the perivascular spaces (PVS) in NASA and European Space Agency astronauts and Roscosmos cosmonauts after a 6-mo spaceflight on the International Space Station (ISS). We found increased volume of basal ganglia PVS and white matter PVS (WM-PVS) after spaceflight, which was more prominent in the NASA crew than the Roscosmos crew. Moreover, both crews demonstrated a similar degree of lateral ventricle enlargement and decreased subarachnoid space at the vertex, which was correlated with WM-PVS enlargement. As all crews experienced the same environment aboard the ISS, the differences in WM-PVS enlargement may have been due to, among other factors, differences in the use of countermeasures and high-resistive exercise regimes, which can influence brain fluid redistribution. Moreover, NASA astronauts who developed SANS had greater pre- and postflight WM-PVS volumes than those unaffected. These results provide evidence for a potential link between WM-PVS fluid and SANS.


Assuntos
Astronautas , Líquido Cefalorraquidiano , Sistema Glinfático , Voo Espacial , Transtornos da Visão , Líquido Cefalorraquidiano/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos da Visão/líquido cefalorraquidiano , Transtornos da Visão/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
3.
Front Neural Circuits ; 16: 815838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250494

RESUMO

Humans undergo extreme physiological changes when subjected to long periods of weightlessness, and as we continue to become a space-faring species, it is imperative that we fully understand the physiological changes that occur in the human body, including the brain. In this study, we present findings of brain structural changes associated with long-duration spaceflight based on diffusion magnetic resonance imaging (dMRI) data. Twelve cosmonauts who spent an average of six months aboard the International Space Station (ISS) were scanned in an MRI scanner pre-flight, ten days after flight, and at a follow-up time point seven months after flight. We performed differential tractography, a technique that confines white matter fiber tracking to voxels showing microstructural changes. We found significant microstructural changes in several large white matter tracts, such as the corpus callosum, arcuate fasciculus, corticospinal, corticostriatal, and cerebellar tracts. This is the first paper to use fiber tractography to investigate which specific tracts exhibit structural changes after long-duration spaceflight and may direct future research to investigate brain functional and behavioral changes associated with these white matter pathways.


Assuntos
Voo Espacial , Ausência de Peso , Substância Branca , Astronautas , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
4.
Front Hum Neurosci ; 14: 290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005135

RESUMO

Group problem solving is a prototypical complex collective intellectual activity. Psychological research provides compelling evidence that problem solving in groups is both qualitatively and quantitatively different from doing so alone. However, the question of whether individual and collective problem solving involve the same neural substrate has not yet been addressed, mainly due to methodological limitations. In the current study, functional magnetic resonance imaging was performed to compare brain activation when participants solved Raven-like matrix problems in a small group and individually. In the group condition, the participant in the scanner was able to discuss the problem with other team members using a special communication device. In the individual condition, the participant was required to think aloud while solving the problem in the silent presence of the other team members. Greater activation was found in several brain regions during group problem solving, including the medial prefrontal cortex; lateral parietal, cingulate, precuneus and retrosplenial cortices; frontal and temporal poles. These areas have been identified as potential components of the so-called "social brain" on the basis of research using offline judgments of material related to socializing. Therefore, this study demonstrated the actual involvement of these regions in real-time social interactions, such as group problem solving. However, further connectivity analysis revealed that the social brain components are co-activated, but do not increase their coupling during cooperation as would be suggested for a holistic network. We suggest that the social mode of the brain may be described instead as a re-configuration of connectivity between basic networks, and we found decreased connectivity between the language and salience networks in the group compared to the individual condition. A control experiment showed that the findings from the main experiment cannot be entirely accounted for by discourse comprehension. Thus, the study demonstrates affordances provided by the presented new technique for neuroimaging the "group mind," implementing the single-brain version of the second-person neuroscience approach.

5.
Sci Adv ; 6(36)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917625

RESUMO

Long-duration spaceflight causes widespread physiological changes, although its effect on brain structure remains poorly understood. In this work, we acquired diffusion magnetic resonance imaging to investigate alterations of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) compositions in each voxel, before, shortly after, and 7 months after long-duration spaceflight. We found increased WM in the cerebellum after spaceflight, providing the first clear evidence of sensorimotor neuroplasticity. At the region of interest level, this increase persisted 7 months after return to Earth. We also observe a widespread redistribution of CSF, with concomitant changes in the voxel fractions of adjacent GM. We show that these GM changes are the result of morphological changes rather than net tissue loss, which remained unclear from previous studies. Our study provides evidence of spaceflight-induced neuroplasticity to adapt motor strategies in space and evidence of fluid shift-induced mechanical changes in the brain.

6.
Front Hum Neurosci ; 14: 192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655386

RESUMO

Despite the increasing popularity of neurofeedback, its mechanisms of action are still poorly understood. This study aims to describe the processes underlying implicit electroencephalographic neurofeedback. Fifty-two healthy volunteers were randomly assigned to a single session of infra-low frequency neurofeedback or sham neurofeedback, with electrodes over the right middle temporal gyrus and the right inferior parietal lobule. They observed a moving rocket, the speed of which was modulated by the waveform derived from a band-limited infra-low frequency filter. Immediately before and after the session, the participants underwent a resting-state fMRI. Network-based statistical analysis was applied, comparing post- vs. pre-session and real vs. sham neurofeedback conditions. As a result, two phenomena were observed. First, we described a brain circuit related to the implicit neurofeedback process itself, consisting of the lateral occipital cortex, right dorsolateral prefrontal cortex, left orbitofrontal cortex, right ventral striatum, and bilateral dorsal striatum. Second, we found increased connectivity between key regions of the salience, language, and visual networks, which is indicative of integration in sensory processing. Thus, it appears that a single session of implicit infra-low frequency electroencephalographic neurofeedback leads to significant changes in intrinsic brain connectivity.

7.
Front Physiol ; 10: 761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333476

RESUMO

The present study reports alterations of task-based functional brain connectivity in a group of 11 cosmonauts after a long-duration spaceflight, compared to a healthy control group not involved in the space program. To elicit the postural and locomotor sensorimotor mechanisms that are usually most significantly impaired when space travelers return to Earth, a plantar stimulation paradigm was used in a block design fMRI study. The motor control system activated by the plantar stimulation involved the pre-central and post-central gyri, SMA, SII/operculum, and, to a lesser degree, the insular cortex and cerebellum. While no post-flight alterations were observed in terms of activation, the network-based statistics approach revealed task-specific functional connectivity modifications within a broader set of regions involving the activation sites along with other parts of the sensorimotor neural network and the visual, proprioceptive, and vestibular systems. The most notable findings included a post-flight increase in the stimulation-specific connectivity of the right posterior supramarginal gyrus with the rest of the brain; a strengthening of connections between the left and right insulae; decreased connectivity of the vestibular nuclei, right inferior parietal cortex (BA40) and cerebellum with areas associated with motor, visual, vestibular, and proprioception functions; and decreased coupling of the cerebellum with the visual cortex and the right inferior parietal cortex. The severity of space motion sickness symptoms was found to correlate with a post- to pre-flight difference in connectivity between the right supramarginal gyrus and the left anterior insula. Due to the complex nature and rapid dynamics of adaptation to gravity alterations, the post-flight findings might be attributed to both the long-term microgravity exposure and to the readaptation to Earth's gravity that took place between the landing and post-flight MRI session. Nevertheless, the results have implications for the multisensory reweighting and gravitational motor system theories, generating hypotheses to be tested in future research.

8.
Proc Natl Acad Sci U S A ; 116(21): 10531-10536, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061119

RESUMO

Long-duration spaceflight induces detrimental changes in human physiology. Its residual effects and mechanisms remain unclear. We prospectively investigated the changes in cerebrospinal fluid (CSF) volume of the brain ventricular regions in space crew by means of a region of interest analysis on structural brain scans. Cosmonaut MRI data were investigated preflight (n = 11), postflight (n = 11), and at long-term follow-up 7 mo after landing (n = 7). Post hoc analyses revealed a significant difference between preflight and postflight values for all supratentorial ventricular structures, i.e., lateral ventricle (mean % change ± SE = 13.3 ± 1.9), third ventricle (mean % change ± SE = 10.4 ± 1.1), and the total ventricular volume (mean % change ± SE = 11.6 ± 1.5) (all P < 0.0001), with higher volumes at postflight. At follow-up, these structures did not quite reach baseline levels, with still residual increases in volume for the lateral ventricle (mean % change ± SE = 7.7 ± 1.6; P = 0.0009), the third ventricle (mean % change ± SE = 4.7 ± 1.3; P = 0.0063), and the total ventricular volume (mean % change ± SE = 6.4 ± 1.3; P = 0.0008). This spatiotemporal pattern of CSF compartment enlargement and recovery points to a reduced CSF resorption in microgravity as the underlying cause. Our results warrant more detailed and longer longitudinal follow-up. The clinical impact of our findings on the long-term cosmonauts' health and their relation to ocular changes reported in space travelers requires further prospective studies.


Assuntos
Ventrículos Cerebrais , Voo Espacial , Adulto , Estudos de Casos e Controles , Ventrículos Cerebrais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Prospectivos
11.
Brain Struct Funct ; 221(5): 2873-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25963710

RESUMO

To date, hampered physiological function after exposure to microgravity has been primarily attributed to deprived peripheral neuro-sensory systems. For the first time, this study elucidates alterations in human brain function after long-duration spaceflight. More specifically, we found significant differences in resting-state functional connectivity between motor cortex and cerebellum, as well as changes within the default mode network. In addition, the cosmonaut showed changes in the supplementary motor areas during a motor imagery task. These results highlight the underlying neural basis for the observed physiological deconditioning due to spaceflight and are relevant for future interplanetary missions and vestibular patients.


Assuntos
Astronautas , Encéfalo/fisiologia , Plasticidade Neuronal , Voo Espacial , Adulto , Astronautas/psicologia , Cerebelo/fisiologia , Humanos , Imaginação/fisiologia , Masculino , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...