Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138127

RESUMO

Bacillus subtilis 26D is a plant growth-promoting endophytic bacteria capable of inducing systemic resistance through the priming mechanism, which includes plant genome reprogramming and the phenomenon of RNA interference (RNAi) and microRNA (miRNAs). The phloem-feeding insect bird cherry-oat aphid Rhopalosiphum padi L. is a serious pest that causes significant damage to crops throughout the world. However, the function of plant miRNAs in the response to aphid infestation remains unclear. The results of this work showed that B. subtilis 26D stimulated aphid resistance in wheat plants, inducing the expression of genes of hormonal signaling pathways ICS, WRKY13, PR1, ACS, EIN3, PR3, and ABI5. In addition, B. subtilis 26D activated the RNAi mechanism and regulated the expression of nine conserved miRNAs through activation of the ethylene, salicylic acid (SA), and abscisic acid (ABA) signaling pathways, which was demonstrated by using treatments with phytohormones. Treatment of plants with SA, ethylene, and ABA acted in a similar manner to B. subtilis 26D on induction of the expression of the AGO4, AGO5 and DCL2, DCL4 genes, as well as the expression of nine conserved miRNAs. Different patterns of miRNA expression were found in aphid-infested plants and in plants treated with B. subtilis 26D or SA, ethylene, and ABA and infested by aphids, suggesting that miRNAs play multiple roles in the plant response to phloem-feeding insects, associated with effects on hormonal signaling pathways, redox metabolism, and the synthesis of secondary metabolites. Our study provides new data to further elucidate the fine mechanisms of bacterial-induced priming. However, further extensive work is needed to fully unravel these mechanisms.

2.
ACS Sens ; 8(9): 3547-3554, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37682632

RESUMO

We investigated the noise and photoresponse characteristics of various optical transparencies of nanotube networks to identify an optimal randomly oriented network of carbon nanotube (CNT)-based devices for UV-assisted gas sensing applications. Our investigation reveals that all of the studied devices demonstrate negative photoconductivity upon exposure to UV light. Our studies confirm the effect of UV irradiation on the electrical properties of CNT networks and the increased photoresponse with decreasing UV light wavelength. We also extend our analysis to explore the low-frequency noise properties of different nanotube network transparencies. Our findings indicate that devices with higher nanotube network transparencies exhibit lower noise levels. We conduct additional measurements of noise and resistance in an ethanol and acetone gas environment, demonstrating the high sensitivity of higher-transparent (lower-density) nanotube networks. Overall, our results indicate that lower-density nanotube networks hold significant promise as a viable choice for UV-assisted gas sensing applications.


Assuntos
Nanotubos de Carbono , Raios Ultravioleta , Acetona , Etanol
3.
Sci Rep ; 13(1): 11072, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422585

RESUMO

Lung cancer is referred to as the second most common cancer worldwide and is mainly associated with complex diagnostics and the absence of personalized therapy. Metabolomics may provide significant insights into the improvement of lung cancer diagnostics through identification of the specific biomarkers or biomarker panels that characterize the pathological state of the patient. We performed targeted metabolomic profiling of plasma samples from individuals with non-small cell lung cancer (NSLC, n = 100) and individuals without any cancer or chronic pathologies (n = 100) to identify the relationship between plasma endogenous metabolites and NSLC by means of modern comprehensive bioinformatics tools, including univariate analysis, multivariate analysis, partial correlation network analysis and machine learning. Through the comparison of metabolomic profiles of patients with NSCLC and noncancer individuals, we identified significant alterations in the concentration levels of metabolites mainly related to tryptophan metabolism, the TCA cycle, the urea cycle and lipid metabolism. Additionally, partial correlation network analysis revealed new ratios of the metabolites that significantly distinguished the considered groups of participants. Using the identified significantly altered metabolites and their ratios, we developed a machine learning classification model with an ROC AUC value equal to 0.96. The developed machine learning lung cancer model may serve as a prototype of the approach for the in-time diagnostics of lung cancer that in the future may be introduced in routine clinical use. Overall, we have demonstrated that the combination of metabolomics and up-to-date bioinformatics can be used as a potential tool for proper diagnostics of patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Metabolômica , Biomarcadores/metabolismo , Metabolismo dos Lipídeos
4.
Life (Basel) ; 13(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676163

RESUMO

The use of biocontrol agents based on endophytic bacteria against phloem-feeding insects is limited by a lack of knowledge and understanding of the mechanism of action of the endophyte community that makes up the plant microbiome. In this work, the mechanisms of the additive action of endophytic strains B. subtilis 26D and B. subtilis 11VM on the resistance of bread spring wheat against greenbug aphid Schizaphis graminum, was studied. It was shown that B. subtilis 26D secreted lipopeptide surfactin and phytohormones cytokinins, and B. subtilis 11VM produced iturin and auxins into the cultivation medium. Both strains and their lipopeptide-rich fractions showed direct aphicidal activity against greenbug aphid. For the first time, it was shown that B. subtilis 26D and B. subtilis 11VM in the same manner, as well as their lipopeptide-rich fractions, activated the expression of salicylate- and ethylene-dependent PR genes, and influenced plant redox metabolism, which led to an increase in plant endurance against aphids. The composition of endophytic strains B. subtilis 26D + B. subtilis 11VM had an additive effect on plant resistance to aphids due to an increase in the number of endophytic bacterial cells, and, as well as due to the synergistic effect of their mixture of lipopeptides - surfactin + iturin, both on the aphid mortality and on the expression of PR1 and PR3 genes. All these factors can be the reason for the observed increase in the growth of plants affected by aphids under the influence of B. subtilis 26D and B. subtilis 11VM, individually and in composition. The study demonstrates the possibility of creating in the future an artificial composition to enhance plant microbiome with endophytic bacteria, which combines growth-promoting and plant immunity stimulating properties against phloem-feeding insects. This direction is one of the most promising approaches to green pesticide discovery in the future.

5.
ACS Nano ; 16(11): 18968-18977, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36315105

RESUMO

We report on the electrical gating of the charge-density-wave phases and current in h-BN-capped three-terminal 1T-TaS2 heterostructure devices. It is demonstrated that the application of a gate bias can shift the source-drain current-voltage hysteresis associated with the transition between the nearly commensurate and incommensurate charge-density-wave phases. The evolution of the hysteresis and the presence of abrupt spikes in the current while sweeping the gate voltage suggest that the effect is electrical rather than self-heating. We attribute the gating to an electric-field effect on the commensurate charge-density-wave domains in the atomic planes near the gate dielectric. The transition between the nearly commensurate and incommensurate charge-density-wave phases can be induced by both the source-drain current and the electrostatic gate. Since the charge-density-wave phases are persistent in 1T-TaS2 at room temperature, one can envision memory applications of such devices when scaled down to the dimensions of individual commensurate domains and few-atomic plane thicknesses.

6.
ACS Sens ; 7(10): 3094-3101, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121758

RESUMO

The gas sensing properties of graphene back-gated field-effect transistor (GFET) sensors toward acetonitrile, tetrahydrofuran, and chloroform vapors were investigated with the focus on unfolding possible gas detection mechanisms. The FET configuration of the sensor device enabled gate voltage tuning for enhanced measurements of changes in DC electrical characteristics. Electrical measurements were combined with a fluctuation-enhanced sensing methodology and intermittent UV irradiation. Distinctly different features in 1/f noise spectra for the organic gases measured under UV irradiation and in the dark were observed. The most intense response observed for tetrahydrofuran prompted the decomposition of the DC characteristic, revealing the photoconductive and photogating effect occurring in the graphene channel with the dominance of the latter. Our observations shed light on understanding surface processes at the interface between graphene and volatile organic compounds for graphene-based sensors in ambient conditions that yield enhanced sensitivity and selectivity.

7.
Viruses ; 14(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35746613

RESUMO

COVID-19 caused by SARS-CoV-2 is continuing to spread around the world and drastically affect our daily life. New strains appear, and the severity of the course of the disease itself seems to be decreasing, but even people who have been ill on an outpatient basis suffer post-COVID consequences. Partly, it is associated with the autoimmune reactions, so debates about the development of new vaccines and the need for vaccination/revaccination continue. In this study we performed an analysis of the antibody response of patients with COVID-19 to linear and conformational epitopes of viral proteins using ELISA, chip array and western blot with analysis of correlations between antibody titer, disease severity, and complications. We have shown that the presence of IgG antibodies to the nucleoprotein can deteriorate the course of the disease, induce multiple direct COVID-19 symptoms, and contribute to long-term post-covid symptoms. We analyzed the cross reactivity of antibodies to SARS-CoV-2 with own human proteins and showed that antibodies to the nucleocapsid protein can bind to human proteins. In accordance with the possibility of HLA presentation, the main possible targets of the autoantibodies were identified. People with HLA alleles A01:01; A26:01; B39:01; B15:01 are most susceptible to the development of autoimmune processes after COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/complicações , Humanos , Nucleoproteínas , Glicoproteína da Espícula de Coronavírus , Síndrome de COVID-19 Pós-Aguda
8.
Nanoscale ; 14(19): 7242-7249, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35514294

RESUMO

The nature of the low-frequency 1/f noise in electronic materials and devices is one of the oldest unsolved physical problems (f is the frequency). The fundamental question of the noise source-fluctuations in the mobility vs. number of charge carriers-is still debated. While there are several pieces of evidence to prove that the 1/f noise in semiconductors is due to the fluctuations in the number of the charge carriers, there is no direct evidence of the mobility fluctuations as the source of 1/f noise in any material. Herein, we measured noise in an h-BN encapsulated graphene transistor under the conditions of geometrical magnetoresistance to directly assess the mechanism of low-frequency electronic current fluctuations. It was found that the relative noise spectral density of the graphene resistance fluctuations depends non-monotonically on the magnetic field (B) with a minimum at approximately µ0B ≅ 1 (µ0 is the electron mobility). This observation proves unambiguously that mobility fluctuations are the dominant mechanism of electronic noise in high-quality graphene. Our results are important for all proposed applications of graphene in electronics and add to the fundamental understanding of the 1/f noise origin in any electronic device.

9.
Biomolecules ; 12(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35204789

RESUMO

Endophytic plant-growth-promoting microorganisms can protect plants against pathogens, but they have rarely been investigated as potential biocontrol agents and triggers of induced systemic resistance (ISR), regulated by phytohormones, against viruses. We studied the role of endophytic strains Bacillus subtilis 26D and B. subtilis Ttl2, which secrete ribonucleases and phytohormones, in the induction of tomato plant resistance against potato virus X and potato virus Y in a greenhouse condition. The endophytes reduced the accumulation of viruses in plants, increased the activity of plant ribonucleases and recovered the fruit yield of infected tomato plants. Both the 26D and Ttl2 strains induced ISR by activating the transcription of genes related to salicylate- and jasmonate-dependent responses. The 26D and Ttl2 strains increased the content of cytokinins and decreased the level of indolacetic acid in plants infected with PVX or PVY. PVY led to an increase of the abscisic acid (ABA) content in tomato plants, and PVX had the opposite effect. Both strains reduced the ABA content in plants infected with PVY and induced ABA accumulation in plants infected with PVX, which led to an increase in the resistance of plants. This is the first report of the protection of tomato plants against viral diseases by foliar application of endophytes.


Assuntos
Potexvirus , Potyvirus , Solanum lycopersicum , Bacillus subtilis , Solanum lycopersicum/genética , Doenças das Plantas , Potyvirus/fisiologia , Ribonucleases
10.
Data Brief ; 40: 107770, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34977286

RESUMO

The SARS-CoV-2 pandemic is a big challenge for humanity. The COVID-19 severity differs significantly from patient to patient, and it is important to study the factors protecting from severe forms of the disease. Respiratory microbiota may influence the patient's susceptibility to infection and disease severity due to its ability to modulate the immune system response of the host organism. This data article describes the microbiome dataset from the upper respiratory tract of SARS-CoV-2 positive patients from Russia. This dataset reports the microbial community profile of 335 human nasopharyngeal swabs collected between 2020-05 and 2021-03 during the first and the second epidemic waves. Samples were collected from both inpatients and outpatients in 4 cities of the Russian Federation (Moscow, Kazan, Irkutsk, Nizhny Novgorod) and sequenced using the 16S rRNA gene amplicon sequencing of V3-V4 region. Data contains information about the patient such as age, sex, hospitalization status, percent of damaged lung tissue, oxygen saturation (SpO2), respiratory rate, need for supplemental oxygen, chest computer tomography severity score, SARS-CoV-2 lineage, and also information about smoking and comorbidities. The amplicon sequencing data were deposited at NCBI SRA as BioProject PRJNA751478.

11.
Micromachines (Basel) ; 12(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34832754

RESUMO

RF switches, which use a combination of graphene and two-dimensional high-density electron gas (2DEG) in the AlGaN/GaN system, were proposed and studied in the frequency band from 10 MHz to 114.5 GHz. The switches were integrated into the coplanar waveguide, which allows them to be used in any system without the use of, e.g., bonding, flip-chip and other technologies and avoiding the matching problems. The on-state insertion losses for the designed switches were measured to range from 7.4 to 19.4 dB, depending on the frequency and switch design. Although, at frequencies above 70 GHz, the switches were less effective, the switching effect was still evident with an approximately 4 dB on-off ratio. The best switches exhibited rise and fall switching times of ~25 ns and ~17 ns, respectively. The use of such a switch can provide up to 20 MHz of bandwidth in time-modulated systems, which is an outstanding result for such systems. The proposed equivalent circuit describes well the switching characteristics and can be used to design switches with required parameters.

12.
Plants (Basel) ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34451631

RESUMO

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1-SnToxA, Snn1-SnTox1and Snn3-SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3-SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1-SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1-SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host's own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.

13.
Micromachines (Basel) ; 12(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205287

RESUMO

AlGaN/GaN fin-shaped and large-area grating gate transistors with two layers of two-dimensional electron gas and a back gate were fabricated and studied experimentally. The back gate allowed reducing the subthreshold leakage current, improving the subthreshold slope and adjusting the threshold voltage. At a certain back gate voltage, transistors operated as normally-off devices. Grating gate transistors with a high gate area demonstrated little subthreshold leakage current, which could be further reduced by the back gate. The low frequency noise measurements indicated identical noise properties and the same trap density responsible for noise when the transistors were controlled by either top or back gates. This result was explained by the tunneling of electrons to the traps in AlGaN as the main noise mechanism. The trap density extracted from the noise measurements was similar or less than that reported in the majority of publications on regular AlGaN/GaN transistors.

14.
Adv Mater ; 33(11): e2007286, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576041

RESUMO

Polymer composite films containing fillers comprising quasi-1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to ≈106 . The polymer composites with low loadings of quasi-1D TaSe3 fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X-band GHz and extremely high frequency sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.

15.
Biomolecules ; 11(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525389

RESUMO

Ethylene, salicylic acid (SA), and jasmonic acid are the key phytohormones involved in plant immunity, and other plant hormones have been demonstrated to interact with them. The classic phytohormone cytokinins are important participants of plant defense signaling. Crosstalk between ethylene and cytokinins has not been sufficiently studied as an aspect of plant immunity and is addressed in the present research. We compared expression of the genes responsible for hormonal metabolism and signaling in wheat cultivars differing in resistance to Stagonospora nodorum in response to their infection with fungal isolates, whose virulence depends on the presence of the necrotrophic effector SnTox3. Furthermore, we studied the action of the exogenous cytokinins, ethephon (2-chloroethylphosphonic acid, ethylene-releasing agent) and 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) on infected plants. Wheat susceptibility was shown to develop due to suppression of reactive oxygen species production and decreased content of active cytokinins brought about by SnTox3-mediated activation of the ethylene signaling pathway. SnTox3 decreased cytokinin content most quickly by its activated glucosylation in an ethylene-dependent manner and, furthermore, by oxidative degradation and inhibition of biosynthesis in ethylene-dependent and ethylene-independent manners. Exogenous zeatin application enhanced wheat resistance against S. nodorum through inhibition of the ethylene signaling pathway and upregulation of SA-dependent genes. Thus, ethylene inhibited triggering of SA-dependent resistance mechanism, at least in part, by suppression of the cytokinin signaling pathway.


Assuntos
Ascomicetos/metabolismo , Citocininas/química , Etilenos/química , Triticum/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Peróxido de Hidrogênio , NADPH Oxidases/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio , Explosão Respiratória , Sementes/metabolismo , Transdução de Sinais , Superóxidos
16.
Front Microbiol ; 11: 569457, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178153

RESUMO

Viral diseases and their damage causing significant loss to economically important crops have increased by several folds during the last decade. All the conventional approaches are not able to eradicate the viral infection. Therefore, there is a need to look for efficient and eco-friendly viral disease-preventive measures. The genomic material of the majority of deleterious viruses of higher plants is RNA. One of the possible measures to control viruses is the use of ribonucleases (RNases), which can cleave RNA in the viral genome. Based on this, we investigated the RNase activity of endophytic Bacillus spp., which can enrich in 103-105 colony-forming units per gram of wet mass of aboveground part of potato plants. A high level of RNase activity was observed in the culture medium of Bacillus thuringiensis B-6066, Bacillus sp. STL-7, Bacillus sp. TS2, and Bacillus subtilis 26D. B. thuringiensis B-5351 had low RNase activity but high ability to colonize internal plant tissues, Bacillus sp. STL-7 with high RNase activity have relatively low number of cells in internal tissues of plants. B. thuringiensis B-6066, B. subtilis 26D, and Bacillus sp. TS stimulate RNase activity in potato plants for a long time after application. Strains with high ability to colonize internal plant tissues combined with high RNase activity reduced severity of viral diseases symptoms on plants and reduced the incidence of potato viruses M, S, and Y. It is worth noting that Bacillus spp. under investigation reduced the number of Leptinotarsa decemlineata Say. egg clusters and larvae on treated plants and showed antifeedant activity. This results in increase of potato productivity mainly in the fraction of major tubers. B. subtilis 26D and Bacillus sp. TS2 combining endophytic lifestyle, RNase, and antifeedant activity may become the basis for the development of biocontrol agents for plant protection.

17.
Materials (Basel) ; 13(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957632

RESUMO

Electrical and noise properties of graphene contacts to AlGaN/GaN heterostructures were studied experimentally. It was found that graphene on AlGaN forms a high-quality Schottky barrier with the barrier height dependent on the bias. The apparent barrier heights for this kind of Schottky diode were found to be relatively high, varying within the range of φb = (1.0-1.26) eV. AlGaN/GaN fin-shaped field-effect transistors (finFETs) with a graphene gate were fabricated and studied. These devices demonstrated ~8 order of magnitude on/off ratio, subthreshold slope of ~1.3, and low subthreshold current in the sub-picoamperes range. The effective trap density responsible for the 1/f low-frequency noise was found within the range of (1-5) · 1019 eV-1 cm-3. These values are of the same order of magnitude as reported earlier and in AlGaN/GaN transistors with Ni/Au Schottky gate studied as a reference in the current study. A good quality of graphene/AlGaN Schottky barrier diodes and AlGaN/GaN transistors opens the way for transparent GaN-based electronics and GaN-based devices exploring vertical electron transport in graphene.

18.
ACS Appl Mater Interfaces ; 12(25): 28635-28644, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476399

RESUMO

We report on the synthesis of the epoxy-based composites with graphene fillers and test their electromagnetic shielding efficiency by the quasi-optic free-space method in the extremely high-frequency (EHF) band (220-325 GHz). The curing adhesive composites were produced by a scalable technique with a mixture of single-layer and few-layer graphene layers of few-micrometer lateral dimensions. It was found that the electromagnetic transmission, T, is low even at small concentrations of graphene fillers: T<1% at a frequency of 300 GHz for a composite with only ϕ = 1 wt% graphene. The main shielding mechanism in composites with the low graphene loading is absorption. The composites of 1 mm in thickness and a graphene loading of 8 wt% provide an excellent electromagnetic shielding of 70 dB in the sub-terahertz EHF frequency band with negligible energy reflection to the environment. The developed lightweight adhesive composites with graphene fillers can be used as electromagnetic absorbers in the high-frequency microwave radio relays, microwave remote sensors, millimeter wave scanners, and wireless local area networks.

19.
Micromachines (Basel) ; 11(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419371

RESUMO

We report on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN-SiC hybrid material was developed in order to improve thermal management and to reduce trapping effects. Fabricated Schottky barrier diodes (SBDs) demonstrated an ideality factor n at approximately 1.7 and breakdown voltages (fields) up to 780 V (approximately 0.8 MV/cm). Hall measurements revealed a thermally stable electron density at N2DEG = 1 × 1013 cm-2 of two-dimensional electron gas in the range of 77-300 K, with mobilities µ = 1.7 × 103 cm2/V∙s and µ = 1.0 × 104 cm2/V∙s at 300 K and 77 K, respectively. The maximum drain current and the transconductance were demonstrated to be as high as 0.5 A/mm and 150 mS/mm, respectively, for the transistors with gate length LG = 5 µm. Low-frequency noise measurements demonstrated an effective trap density below 1019 cm-3 eV-1. RF analysis revealed fT and fmax values up to 1.3 GHz and 6.7 GHz, respectively, demonstrating figures of merit fT × LG up to 6.7 GHz × µm. These data further confirm the high potential of a GaN-SiC hybrid material for the development of thin high electron mobility transistors (HEMTs) and SBDs with improved thermal stability for high-frequency and high-power applications.

20.
RSC Adv ; 10(60): 36303-36316, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35517935

RESUMO

In this paper we describe the reaction between various potassium xanthates (potassium O-methyl xanthate, potassium O-isobutyl xanthate, xanthate functionalized MPEGs, etc.) and common five-membered cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). The reaction was carried out under catalyst-free conditions. Intensive evolution of both CO2 and COS and the simultaneous formation of a rich precipitate were found to be the characteristic features of the studied reaction. It was determined that the precipitate consists of various alkoxides, including potassium ethane-1,2-bis(olate) (EC-based reaction) and potassium propane-1,2-bis(olate) (PC-based reaction) and alkoxide-terminated sulfides. It was also demonstrated that the resulting liquid phase (the mother liquor) contains polyalkylene sulfides whose number average molecular weight (M n) was found to be in the range 400-550 Da and 300-400 Da for EC- and PC-based oligomers, respectively. Further studies revealed that the distribution between major products varies considerably with variation in the parameters of the reaction. Thus, by applying reduced pressure conditions and a temperature equal to 90 °C, up to 95% selectivity towards the formation of alkoxide-terminated sulfide (e.g., potassium 1,1'-thiobis(propan-2-olate)) was achieved. On the other hand, selectivity towards alkoxide formation equal to 98% was achieved for the reactions carried out in the presence of water. As a general trend, it was also established that a shift in balance between products towards the formation of sulfur-containing products (sulfides) occurs with an appropriate increase in the temperature of the reaction. Based on the obtained experimental data supplemented with quantum-chemical calculations (NBO analysis and scanning of the potential energy surface), the mechanisms of the cascade reactions underlying the formation of key intermediates and final products were also proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...