Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 71(3): 554-565, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862199

RESUMO

Most genome-wide association studies (GWAS) of complex traits are performed using models with additive allelic effects. Hundreds of loci associated with type 2 diabetes have been identified using this approach. Additive models, however, can miss loci with recessive effects, thereby leaving potentially important genes undiscovered. We conducted the largest GWAS meta-analysis using a recessive model for type 2 diabetes. Our discovery sample included 33,139 case subjects and 279,507 control subjects from 7 European-ancestry cohorts, including the UK Biobank. We identified 51 loci associated with type 2 diabetes, including five variants undetected by prior additive analyses. Two of the five variants had minor allele frequency of <5% and were each associated with more than a doubled risk in homozygous carriers. Using two additional cohorts, FinnGen and a Danish cohort, we replicated three of the variants, including one of the low-frequency variants, rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-3.19; P = 1 × 10-16) and a stronger effect in men than in women (for interaction, P = 7 × 10-7). The signal was associated with multiple diabetes-related traits, with homozygous carriers showing a 10% decrease in LDL cholesterol and a 20% increase in triglycerides; colocalization analysis linked this signal to reduced expression of the nearby PELO gene. These results demonstrate that recessive models, when compared with GWAS using the additive approach, can identify novel loci, including large-effect variants with pathophysiological consequences relevant to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Adulto , LDL-Colesterol/sangue , Europa (Continente)/etnologia , Feminino , Frequência do Gene , Homozigoto , Humanos , Masculino , Metaboloma/genética , Pessoa de Meia-Idade , Mutação , Fatores Sexuais , Triglicerídeos/sangue
2.
Cell Stem Cell ; 22(1): 35-49.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249464

RESUMO

Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reprogramação Celular , Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fosfoproteínas/metabolismo , Regeneração , Animais , Biomarcadores/metabolismo , Proteínas de Ciclo Celular , Feto/metabolismo , Humanos , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA