Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 200: 67-72, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30826622

RESUMO

Micro-low energy electron diffraction (µLEED) is frequently used in conjunction with low energy electron microscopy (LEEM) to learn about local surface structural features in small selected areas. Scanning µLEED measurements performed with a very small electron beam (250 nm) can provide precise quantitative information about structural variations with high spatial resolution. We have developed the Source Extraction and Photometry (SEP) - Spot Profile Analysis (SPA) tool for evaluating scanning µLEED data with high throughput. The capability to automate diffraction peak identification with SEP-SPA opens up the possibility to investigate systems with complex diffraction patterns in which diffraction peak positions vary rapidly for small lateral displacements on the surface. The application of this tool to evaluate scanning µLEED data obtained for defective graphene on Cu(111) demonstrates its capabilities. A rich rotational domain structure is observed in which a majority of the graphene is co-aligned with the Cu(111) substrate and the significant remainder comprises domains with large rotations and small sizes that are comparable to the small beam size.

2.
Adv Mater ; 25(43): 6277-83, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23963747

RESUMO

A high-density aligned nanoporous activated microwave exfoliated graphite oxide (aMEGO) ionic actuator is studied. Before applying an external electric field, the cations and anions are randomly distributed in the composite. After applying the electric field, ions ingress in between the aligned aMEGO sheets through the nanopores to compensate the charges on the electrodes, resulting in the separation of neighboring sheets and unidirectional electro actuation.


Assuntos
Grafite/química , Micro-Ondas , Nanoestruturas/química , Técnicas Eletroquímicas , Eletrodos , Líquidos Iônicos/química , Íons/química , Óxidos/química , Polímeros/química , Porosidade , Termodinâmica
3.
Biotechnol Bioeng ; 106(4): 573-83, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20178118

RESUMO

This study is an evaluation of liquid state NMR as a tool for analyzing the lipid composition of algal cultures used for biodiesel production. To demonstrate the viability of this approach, (13)C NMR was used to analyze the lipid composition of intact cells of the algal species, Neochloris oleoabundans (UTEX #1185). Two cultures were used in this study. One culture was "healthy" and grown in conventional media, whereas the other culture was "nitrogen-starved" and grown in media that lacked nitrate. Triglyceride was determined to be present in both cultures by comparing the algal NMR spectra with published chemical shifts for a wide range of lipids and with a spectrum obtained from a triglyceride standard (glyceryl trioleate). In addition, it is shown that (1) the signal-to-noise ratio of the approximately 29.5 ppm methylene peak is indicative of the lipid content and (2) the nitrogen-starved culture contained a greater lipid content than the healthy culture, as expected. Furthermore, the nitrogen-starved culture produced spectra that primarily contained the characteristic peaks of triglyceride (at approximately 61.8 and approximately 68.9 ppm), whereas the healthy culture produced spectra that contained several additional peaks in the glycerol region, likely resulting from the presence of monoglyceride and diglyceride. Finally, potential interferences are evaluated (including the analysis of phospholipids via (31)P NMR) to assess the specificity of the acquired spectra to triglyceride. These results indicate that NMR is a useful diagnostic tool for selectively identifying lipids in algae, with particular relevance to biodiesel production.


Assuntos
Clorófitas/química , Lipídeos/análise , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono/metabolismo , Clorófitas/crescimento & desenvolvimento , Meios de Cultura/química , Coloração e Rotulagem
4.
Biotechnol Bioeng ; 105(5): 889-98, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19998275

RESUMO

Preliminary feasibility studies were performed using Stokes Raman scattering for compositional analysis of algae. Two algal species, Chlorella sorokiniana (UTEX #1230) and Neochloris oleoabundans (UTEX #1185), were chosen for this study. Both species were considered to be candidates for biofuel production. Raman signals due to storage lipids (specifically triglycerides) were clearly identified in the nitrogen-starved C. sorokiniana and N. oleoabundans, but not in their healthy counterparts. On the other hand, signals resulting from the carotenoids were found to be present in all of the samples. Composition mapping was conducted in which Raman spectra were acquired from a dense sequence of locations over a small region of interest. The spectra obtained for the mapping images were filtered for the wavelengths of characteristic peaks that correspond to components of interest (i.e., triglyceride or carotenoid). The locations of the components of interest could be identified by the high intensity areas in the composition maps. Finally, the time evolution of fluorescence background was observed while acquiring Raman signals from the algae. The time dependence of fluorescence background is characterized by a general power law decay interrupted by sudden high intensity fluorescence events. The decreasing trend is likely a result of photo-bleaching of cell pigments due to prolonged intense laser exposure, while the sudden high intensity fluorescence events are not understood.


Assuntos
Eucariotos/química , Análise Espectral Raman/métodos , Chlorella/química , Clorófitas/química , Fluorescência
5.
Nat Nanotechnol ; 3(6): 327-31, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18654541

RESUMO

Polymer-based composites were heralded in the 1960s as a new paradigm for materials. By dispersing strong, highly stiff fibres in a polymer matrix, high-performance lightweight composites could be developed and tailored to individual applications. Today we stand at a similar threshold in the realm of polymer nanocomposites with the promise of strong, durable, multifunctional materials with low nanofiller content. However, the cost of nanoparticles, their availability and the challenges that remain to achieve good dispersion pose significant obstacles to these goals. Here, we report the creation of polymer nanocomposites with functionalized graphene sheets, which overcome these obstacles and provide superb polymer-particle interactions. An unprecedented shift in glass transition temperature of over 40 degrees C is obtained for poly(acrylonitrile) at 1 wt% functionalized graphene sheet, and with only 0.05 wt% functionalized graphene sheet in poly(methyl methacrylate) there is an improvement of nearly 30 degrees C. Modulus, ultimate strength and thermal stability follow a similar trend, with values for functionalized graphene sheet- poly(methyl methacrylate) rivaling those for single-walled carbon nanotube-poly(methyl methacrylate) composites.


Assuntos
Carbono/química , Cristalização/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Polimetil Metacrilato/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
6.
Nanotechnology ; 16(2): 312-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21727442

RESUMO

Electro-orientation of rod-like particles in liquids, under the application of an external AC field, is analysed. A rod shape is suitable for particle light valve (PLV) applications. When they are aligned with their long axes parallel to the electric field (and the direction of light is assumed to be parallel to the applied electric field), then it can lead to good transmission of light. Various criteria to arrive at appropriate parameters for PLV applications are proposed. It is found that good electric conductors are excellent rod materials for PLV applications. They lead to an appropriate orientation of the rods and at the same time result in maximum orientational torque. Water-like liquids with higher values of permittivity are appropriate choices as suspending liquids since the Brownian dispersion in the presence of the electric field is minimized. The time it takes the rods to fully diffuse in the orientational space, once the electric field is turned off, decreases with decreasing liquid viscosity.

7.
J Microsc ; 216(Pt 3): 206-14, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15566491

RESUMO

Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus.

8.
Science ; 259(5093): 346-8, 1993 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17832348

RESUMO

Single-domain microcrystals of LaC(2) encapsulated within nanoscale polyhedral carbon particles have been synthesized in a carbon arc. Typical particle sizes are on the order of 20 to 40 nanometers. The stoichiometry and phase of the La-containing crystals have been assigned from characteristic lattice spacings observed by high-resolution transmission electron microscopy and energy dispersive spectroscopy (EDS). EDS spectra show that La and C are the only elements present. Characteristic interatomic distances of 3.39 and 2.78 angstroms identify the compound inside the nanoparticle cavities as alpha-LaC(2), the phase of LaC(2) that is stable at room temperature. Bulk alpha-LaC(2) is metallic and hydrolytic. Observation of crystals of pure encapsulated alpha-LaC(2) that were exposed to air for several days before analysis indicates that the LaC(2) is protected from degradation bythe carbon polyhedral shells of the nanoparticles. A high percentage of the carbon nanoparticles have encapsulated LaC(2) single crystals. These carbon-coated metal crystals form a new class of materials that can be protected in their pure or carbide forms and may have interesting and useful properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...