Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834510

RESUMO

Both bioactive sphingolipids and Sigma-1 receptor (S1R) chaperones occur ubiquitously in mammalian cell membranes. Endogenous compounds that regulate the S1R are important for controlling S1R responses to cellular stress. Herein, we interrogated the S1R in intact Retinal Pigment Epithelial cells (ARPE-19) with the bioactive sphingoid base, sphingosine (SPH), or the pain-provoking dimethylated SPH derivative, N,N'-dimethylsphingosine (DMS). As informed by a modified native gel approach, the basal and antagonist (BD-1047)-stabilized S1R oligomers dissociated to protomeric forms in the presence of SPH or DMS (PRE-084 as control). We, thus, posited that SPH and DMS are endogenous S1R agonists. Consistently, in silico docking of SPH and DMS to the S1R protomer showed strong associations with Asp126 and Glu172 in the cupin beta barrel and extensive van der Waals interactions of the C18 alkyl chains with the binding site including residues in helices 4 and 5. Mean docking free energies were 8.73-8.93 kcal/mol for SPH and 8.56-8.15 kcal/mol for DMS, and calculated binding constants were ~40 nM for SPH and ~120 nM for DMS. We hypothesize that SPH, DMS, and similar sphingoid bases access the S1R beta barrel via a membrane bilayer pathway. We further propose that the enzymatic control of ceramide concentrations in intracellular membranes as the primary sources of SPH dictates availability of endogenous SPH and DMS to the S1R and the subsequent control of S1R activity within the same cell and/or in cellular environments.


Assuntos
Receptores sigma , Esfingosina , Animais , Esfingolipídeos , Ceramidas , Mamíferos/metabolismo , Receptor Sigma-1
2.
PLoS One ; 14(7): e0219664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31310642

RESUMO

Phenylalanine and cysteine comprise common miss-sense variants (i.e., single nucleotide polymorphisms [SNPs]) at amino acid position 254 of the human indole(ethyl)amine-N-methyltransferase (hINMT). The phenylalanine variant, which occurs in linkage disequilibrium with two 3' UTR SNPs, has been reported to associate with elevated urine levels of trimethylselenonium (TMSe), the Se-methylated product of volatile dimethylselenide. hINMT allozymes expressing either cysteine (254C) or phenylalanine (254F) at position 254 were compared for enzyme activity (i.e., Km and Vmax) towards the INMT substrates tryptamine, dimethylsulfide (DMS) and dimethylselenide (DMSe) in vitro. The SNP 254C had a higher Vmax for DMS and tryptamine in the presence of reducing agent than in its absence. Conversely, Vmax for 254F was insensitive to the presence or absence of reducing agent for these substrates. SNP 254F showed a lower Km for tryptamine in the absence of reducing agent than 254C. No statistically significant difference in Vmax or Km was observed between 254C and 254F allozymes in the presence of reducing agent for DMSe, The Km values for DMSe methylation were about 10-fold (254C) or 6-fold (254F) more favorable than for tryptamine methylation with reducing agent present. These findings indicated that: 1) That phenylalanine at position 254 renders hINMT methylation of substrates DMS and tryptamine insensitive to a non reducing environment. 2) That human INMT harbors significant thioether-S-methyltransferase (TEMT) activity with a higher affinity for DMSe than tryptamine, 3) The reduction of a 44C/254C disulfide bond in hINMT that increases Vmax is proposed.


Assuntos
Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Compostos Organosselênicos/química , Sulfetos/química , Triptaminas/química , Alelos , Cristalografia por Raios X , Dissulfetos , Escherichia coli , Humanos , Isoenzimas , Cinética , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Conformação Proteica
3.
Oncotarget ; 8(31): 51317-51330, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881650

RESUMO

The sigma-1 receptor (Sig1R) is an endoplasmic reticulum chaperonin that is attracting tremendous interest as a potential anti-neurodegenerative target. While this membrane protein is known to reside in the inner nuclear envelope (NE) and influences transcription, apparent Sig1R presence in the nucleoplasm is often observed, seemingly contradicting its NE localization. We addressed this confounding issue by applying an antibody-free approach of electron microscopy (EM) to define Sig1R nuclear localization. We expressed APEX2 peroxidase fused to Sig1R-GFP in a Sig1R-null NSC34 neuronal cell line generated with CRISPR-Cas9. APEX2-catalyzed gold/silver precipitation markedly improved EM clarity and confirmed an apparent intra-nuclear presence of Sig1R. However, serial sectioning combined with APEX2-enhanced EM revealed that Sig1R actually resided in the nucleoplasmic reticulum (NR), a specialized nuclear compartment formed via NE invagination into the nucleoplasm. NR cross-sections also indicated Sig1R in ring-shaped NR membranes. Thus, this study distinguishes Sig1R in the NR which could otherwise appear localized in the nucleoplasm if detected with low-resolution methods. Our finding is important for uncovering potential Sig1R regulations in the nucleus.

4.
Theranostics ; 7(11): 2794-2805, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824716

RESUMO

The ability to locate nerve injury and ensuing neuroinflammation would have tremendous clinical value for improving both the diagnosis and subsequent management of patients suffering from pain, weakness, and other neurologic phenomena associated with peripheral nerve injury. Although several non-invasive techniques exist for assessing the clinical manifestations and morphological aspects of nerve injury, they often fail to provide accurate diagnoses due to limited specificity and/or sensitivity. Herein, we describe a new imaging strategy for visualizing a molecular biomarker of nerve injury/neuroinflammation, i.e., the sigma-1 receptor (S1R), in a rat model of nerve injury and neuropathic pain. The two-fold higher increase of S1Rs was shown in the injured compared to the uninjured nerve by Western blotting analyses. With our novel S1R-selective radioligand, [18F]FTC-146 (6-(3-[18F]fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one), and positron emission tomography-magnetic resonance imaging (PET/MRI), we could accurately locate the site of nerve injury created in the rat model. We verified the accuracy of this technique by ex vivo autoradiography and immunostaining, which demonstrated a strong correlation between accumulation of [18F]FTC-146 and S1R staining. Finally, pain relief could also be achieved by blocking S1Rs in the neuroma with local administration of non-radioactive [19F]FTC-146. In summary, [18F]FTC-146 S1R PET/MR imaging has the potential to impact how we diagnose, manage and treat patients with nerve injury, and thus warrants further investigation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neuralgia/diagnóstico por imagem , Neuralgia/patologia , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/patologia , Tomografia por Emissão de Pósitrons/métodos , Receptores sigma/análise , Animais , Azepinas/administração & dosagem , Benzotiazóis/administração & dosagem , Modelos Animais de Doenças , Radioisótopos de Flúor/administração & dosagem , Marcação por Isótopo , Masculino , Neuroma/complicações , Ratos Sprague-Dawley , Receptor Sigma-1
5.
Adv Exp Med Biol ; 964: 255-265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28315276

RESUMO

The membrane bound 223 amino acid Sigma-1 Receptor (S1R) serves as a molecular chaperone and functional regulator of many signaling proteins. Spinal cord motor neuron activation occurs, in part, via large ventral horn cholinergic synapses called C-boutons/C-terminals. Chronic excitation of motor neurons and alterations in C-terminals has been associated with Amyotrophic Lateral Sclerosis (ALS ). The S1R has an important role in regulating motor neuron function. High levels of the S1R are localized in postsynaptic endoplasmic reticulum (ER) subsurface cisternae within 10-20 nm of the plasma membrane that contain muscarinic type 2 acetylcholine receptors (M2AChR), calcium activated potassium channels (Kv2.1) and slow potassium (SK) channels. An increase in action potentials in the S1R KO mouse motor neurons indicates a critical role for the S1R as a "brake" on motor neuron function possibly via calcium dependent hyperpolarization mechanisms involving the aforementioned potassium channels. The longevity of SOD-1/S1R KO ALS mice is significantly reduced compared to SOD-1/WT ALS controls. The S1R colocalizes in C-terminals with Indole(ethyl)amine-N-methyl transferase (INMT ), the enzyme that produces the S1R agonist , N,N'- dimethyltryptamine (DMT). INMT methylation can additionally neutralize endogenous toxic sulfur and selenium derivatives thus providing functional synergism with DMT to reduce oxidative stress in motor neurons . Small molecule activation of the S1R and INMT thus provides a possible therapeutic strategy to treat ALS .


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Receptores sigma/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Receptor Sigma-1
6.
J Chem Neuroanat ; 83-84: 69-74, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28163218

RESUMO

Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts.


Assuntos
Benzodioxóis/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Dopamina/metabolismo , Psicotrópicos/farmacologia , Pirrolidinas/farmacologia , Animais , Drosophila melanogaster , Humanos , Catinona Sintética
7.
Mol Inform ; 36(5-6)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27860344

RESUMO

The dopamine and serotonin transporter proteins (DAT, SERT) play a vital role in behavior and mental illness. Although their substrate transport has been studied extensively, the molecular basis of their selectivity is not completely understood yet. In this study, we exploit molecular dynamics simulations combined with mutagenesis studies to shed light on the driving factors for DAT-over-SERT selectivity of a set of cathinones. Results indicate that these compounds can adopt two binding modes of which one is more favorable. In addition, free energy calculations indicated the substrate binding site (S1) as the primary recognition site for these ligands. By simulating DAT with SERT-like mutations, we hypothesize unsubstituted cathinones to bind more favorably to DAT, due to a Val152 offering more space, as compared to the bulkier Ile172 in SERT. This was supported by uptake inhibition measurements, which showed an increase in activity in SERT-I172V.


Assuntos
Alcaloides/metabolismo , Anfetaminas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Simulação de Dinâmica Molecular , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Alcaloides/química , Anfetaminas/química , Sítios de Ligação , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Células HEK293 , Humanos , Ligantes , Mutação , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Especificidade por Substrato
8.
Mol Pharmacol ; 89(1): 142-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26560551

RESUMO

The sigma-1 receptor (S1R) is a 223 amino acid two transmembrane (TM) pass protein. It is a non-ATP-binding nonglycosylated ligand-regulated molecular chaperone of unknown three-dimensional structure. The S1R is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes with broad functions that regulate cellular calcium homeostasis and reduce oxidative stress. Several multitasking functions of the S1R are underwritten by chaperone-mediated direct (and indirect) interactions with ion channels, G-protein coupled receptors and cell-signaling molecules involved in the regulation of cell growth. The S1R is a promising drug target for the treatment of several neurodegenerative diseases related to cellular stress. In vitro and in vivo functional and molecular characteristics of the S1R and its interactions with endogenous and synthetic small molecules have been discovered by the use of pharmacologic, biochemical, biophysical, and molecular biology approaches. The S1R exists in monomer, dimer, tetramer, hexamer/octamer, and higher oligomeric forms that may be important determinants in defining the pharmacology and mechanism(s) of action of the S1R. A canonical GXXXG in putative TM2 is important for S1R oligomerization. The ligand-binding regions of S1R have been identified and include portions of TM2 and the TM proximal regions of the C terminus. Some client protein chaperone functions and interactions with the cochaperone 78-kDa glucose-regulated protein (binding immunoglobulin protein) involve the C terminus. Based on its biochemical features and mechanisms of chaperone action the possibility that the S1R is a member of the small heat shock protein family is discussed.


Assuntos
Receptores sigma/agonistas , Receptores sigma/metabolismo , Sequência de Aminoácidos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Receptores sigma/genética , Receptor Sigma-1
9.
Eur J Med Chem ; 108: 577-585, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26717207

RESUMO

Despite their controversial physiology, sigma-1 (σ1) receptors are intriguing targets for the development of therapeutic agents for central nervous system diseases. With the aim of providing versatile pharmacological tools to study σ1 receptors, we developed three σ1 fluorescent tracers by functionalizing three well characterized σ1 ligands with a fluorescent tag. A good compromise between σ1 binding affinity and fluorescent properties was reached, and the σ1 specific targeting of the novel tracers was demonstrated by confocal microscopy and flow cytometry. These novel ligands were also successfully used in competition binding studies by flow cytometry, showing their utility in nonradioactive binding assays as an alternative strategy to the more classical radioligand binding assays. To the best of our knowledge these are the first σ1 fluorescent ligands to be developed and successfully employed in living cells, representing promising tools to strengthen σ1 receptors related studies.


Assuntos
Corantes Fluorescentes/análise , Receptores sigma/metabolismo , Ligação Competitiva , Linhagem Celular , Citometria de Fluxo , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Ligantes , Células MCF-7 , Microscopia Confocal , Estrutura Molecular , Receptor Sigma-1
10.
Curr Protoc Pharmacol ; 71: 1.34.1-1.34.21, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26646191

RESUMO

Sigma receptors, both Sigma-1(S1R) and Sigma-2 (S2R), are small molecule-regulated, primarily endoplasmic reticulum (ER) membrane-associated sites. A number of drugs bind to sigma receptors, including the antipsychotic haloperidol and (+)-pentazocine, an opioid analgesic. Sigma receptors are implicated in many central nervous system disorders, in particular Alzheimer's disease and conditions associated with motor control, such as Amyotrophic Lateral Sclerosis (ALS). Described in this unit are radioligand binding assays used for the pharmacological characterization of S1R and S2R. Methods detailed include a radioligand saturation binding assay for defining receptor densities and a competitive inhibition binding assay employing [³H]-(+)-pentazocine for identifying and characterizing novel ligands that interact with S1R. Procedures using [³H]-1,3-di(2-tolyl)guanidine ([³H]-DTG), a nonselective sigma receptor ligand, are described for conducting a saturation binding and competitive inhibition assays for the S2R site. These protocols are of value in drug discovery in identifying new sigma ligands and in the characterization of these receptors.


Assuntos
Bioensaio/métodos , Ensaio Radioligante/métodos , Receptores sigma/química , Ligação Competitiva/fisiologia , Cinética , Ligação Proteica/fisiologia
11.
J Pharmacol Sci ; 127(1): 10-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25704013

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease affecting spinal cord motoneurons (MN) with an associative connection to Frontotemporal Lobar Dementia (FTLD). The endoplasmic reticulum (ER) bound Sigma-1 Receptor (S1R) chaperone protein localizes to specialized ER cisternae within 10 nm of the plasma membrane in spinal cord ventral horn cholinergic post synaptic C-terminals. Removal of the S1R gene in the Superoxide Dismutase-1 (SOD-1) mouse model of ALS exacerbated the neurodegenerative condition and resulted in a significantly reduced longevity when compared to the SOD-1/S1R wild type (WT) mouse. The proposed amelioration of the ALS phenotype by the S1R is likely due to a "brake" on excitation of the MN as evidenced by a reduction in action potential generation in the MN of the WT when compared to the S1R KO mouse MN. Although the precise signal transduction pathway(s) regulated by the S1R in the MN has/have not been elucidated at present, it is likely that direct or indirect functional interactions occur between the S1R in the ER cisternae with voltage gated potassium channels and/or with muscarinic M2 receptor signaling in the post synaptic plasma membrane. Possible mechanisms for regulation of MN excitability by S1R are discussed.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Receptores sigma/fisiologia , Potenciais de Ação/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Humanos , Camundongos Knockout , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Receptores sigma/genética , Receptor Sigma-1
12.
EBioMedicine ; 2(11): 1806-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26870805

RESUMO

The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18-21 kDa, as shown by specific photolabeling with [(3)H]-Azido-DTG and [(125)I]-iodoazido-fenpropimorph ([(125)I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [(3)H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [(125)I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 µM and 350 µM, respectively), as determined in competition with [(3)H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20-80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.


Assuntos
Sítios de Ligação , Proteínas de Membrana/genética , Receptores de Progesterona/genética , Receptores sigma/genética , Processamento Alternativo , Animais , Sequência de Bases , Linhagem Celular , Expressão Gênica , Técnicas de Inativação de Genes , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Progesterona/metabolismo , Ligação Proteica , Ratos , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Receptores sigma/metabolismo
13.
Biochem J ; 466(2): 263-271, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25510962

RESUMO

The sigma-1 receptor (S1R) is a 223-amino-acid membrane protein that resides in the endoplasmic reticulum and the plasma membrane of some mammalian cells. The S1R is regulated by various synthetic molecules including (+)-pentazocine, cocaine and haloperidol and endogenous molecules such as sphingosine, dimethyltryptamine and dehydroepiandrosterone. Ligand-regulated protein chaperone functions linked to oxidative stress and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and neuropathic pain have been attributed to the S1R. Several client proteins that interact with S1R have been identified including various types of ion channels and G-protein coupled receptors (GPCRs). When S1R constructs containing C-terminal monomeric GFP2 and YFP fusions were co-expressed in COS-7 cells and subjected to FRET spectrometry analysis, monomers, dimers and higher oligomeric forms of S1R were identified under non-liganded conditions. In the presence of the prototypic S1R agonist, (+)-pentazocine, however, monomers and dimers were the prevailing forms of S1R. The prototypic antagonist, haloperidol, on the other hand, favoured higher order S1R oligomers. These data, in sum, indicate that heterologously expressed S1Rs occur in vivo in COS-7 cells in multiple oligomeric forms and that S1R ligands alter these oligomeric structures. We suggest that the S1R oligomerization states may regulate its function(s).


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Modelos Moleculares , Receptores sigma/química , Substituição de Aminoácidos , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Células COS , Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Dimerização , Retículo Endoplasmático/efeitos dos fármacos , Haloperidol/química , Haloperidol/farmacologia , Humanos , Ligantes , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia , Pentazocina/química , Pentazocina/farmacologia , Mutação Puntual , Agregados Proteicos/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Receptores sigma/agonistas , Receptores sigma/genética , Receptores sigma/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Receptor Sigma-1
14.
J Biol Chem ; 289(29): 20333-44, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24847081

RESUMO

Sigma-1 receptor (S1R) is a mammalian member of the ERG2 and sigma-1 receptor-like protein family (pfam04622). It has been implicated in drug addiction and many human neurological disorders, including Alzheimer and Parkinson diseases and amyotrophic lateral sclerosis. A broad range of synthetic small molecules, including cocaine, (+)-pentazocine, haloperidol, and small endogenous molecules such as N,N-dimethyltryptamine, sphingosine, and steroids, have been identified as regulators of S1R. However, the mechanism of activation of S1R remains obscure. Here, we provide evidence in vitro that S1R has ligand binding activity only in an oligomeric state. The oligomeric state is prone to decay into an apparent monomeric form when exposed to elevated temperature, with loss of ligand binding activity. This decay is suppressed in the presence of the known S1R ligands such as haloperidol, BD-1047, and sphingosine. S1R has a GXXXG motif in its second transmembrane region, and these motifs are often involved in oligomerization of membrane proteins. Disrupting mutations within the GXXXG motif shifted the fraction of the higher oligomeric states toward smaller states and resulted in a significant decrease in specific (+)-[(3)H]pentazocine binding. Results presented here support the proposal that S1R function may be regulated by its oligomeric state. Possible mechanisms of molecular regulation of interacting protein partners by S1R in the presence of small molecule ligands are discussed.


Assuntos
Receptores sigma/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Reagentes de Ligações Cruzadas , Cobaias , Haloperidol/metabolismo , Humanos , Ligantes , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pentazocina/metabolismo , Multimerização Proteica , Estabilidade Proteica , Receptores sigma/genética , Receptores sigma/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptor Sigma-1
15.
Biochemistry ; 53(18): 2956-65, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24730580

RESUMO

Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 µM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.


Assuntos
Metiltransferases/antagonistas & inibidores , N,N-Dimetiltriptamina/farmacologia , Triptaminas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Cinética , Pulmão/enzimologia , Metiltransferases/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Coelhos
16.
Biochemistry ; 52(5): 859-68, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23324054

RESUMO

The sigma-1 receptor is a ligand-regulated endoplasmic reticulum (ER) resident chaperone involved in the maintenance of cellular homeostasis. Coupling of the sigma-1 receptor with various ER and/or plasma membrane ion channels is associated with its ability to regulate the locomotor activity and cellular proliferation produced in response to sigma-1 receptor ligands. A number of endogenous small molecules bind to the sigma-1 receptor and have been shown to regulate its activity; these include progesterone, N,N-dimethyltryptamine, d-erythro-sphingosine, and/or other endogenous lipids. We previously reported the synthesis of long chain N-alkylamine derivatives and the characterization of the structure-activity relationship between the chain length of N-alkylamine and affinities at the sigma-1 receptor. Here, we present data demonstrating the photoincorporation of one of these N-alkylamine derivatives, N-[3-(4-nitrophenyl)propyl]-N-dodecylamine (4-NPPC12), to the sigma-1 receptor. Matrix-assisted laser desorption ionization time-of-flight and tandem mass spectrometry showed that 4-NPPC12 photoinserted at histidine 154 of the derivatized population of the sigma-1 receptor. Interestingly, light-dependent photoinsertion of 4-NPPC12 resulted in an enhanced electrophoretic mobility of only 50% of the derivatized receptor molecules as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proposed binding and reactivity of 4-NPPC12 evoke a ligand binding model for the sigma-1 receptor that likely involves a receptor dimer and/or oligomer.


Assuntos
Marcadores de Afinidade/química , Aminas/química , Receptores sigma/análise , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Expressão Gênica , Cobaias , Luz , Processos Fotoquímicos , Multimerização Proteica , Ratos , Receptores sigma/genética , Receptor Sigma-1
17.
Chembiochem ; 13(15): 2277-89, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23001760

RESUMO

Sigma (σ) receptors are unique non-opioid binding sites that are associated with a broad range of disease states. Sigma-2 receptors provide a promising target for diagnostic imaging and pharmacological interventions to curb tumor progression. Most recently, the progesterone receptor (PGRMC1, 25 kDa) has been shown to have σ2 receptor-like binding properties, thus highlighting the need to understand the biological function of an 18 kDa protein that exhibits σ2-like photoaffinity labeling (denoted here as σ2-18k) but the amino acid sequence of which is not known. In order to provide new tools for the study of the σ2-18k protein, we have developed bifunctional σ receptor ligands each bearing a benzophenone photo-crosslinking moiety and an alkyne group to which an azide-containing biotin affinity tag can be covalently attached through click chemistry after photo-crosslinking. Although several compounds showed favorable σ2 binding properties, the highest affinity (2 nM) and the greatest potency in blocking photolabeling of σ2-18k by a radioactive photoaffinity ligand was shown by compound 22. These benzophenone-alkyne σ receptor ligands might therefore be amenable for studying the σ2-18k protein through chemical biology approaches. To the best of our knowledge, these compounds represent the first reported benzophenone-containing clickable σ receptor ligands, which might potentially have broad applications based on the "plugging in" of various tags.


Assuntos
Alcinos/química , Alcinos/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Receptores sigma/metabolismo , Linhagem Celular , Química Click , Reagentes de Ligações Cruzadas/química , Humanos , Ligantes , Processos Fotoquímicos
18.
Eur J Pharmacol ; 682(1-3): 12-20, 2012 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-22381068

RESUMO

Sigma-1 receptors are associated with Alzheimer's disease, major depressive disorders, and schizophrenia. These receptors show progrowth/antiapoptotic properties via their chaperoning functions to counteract ER (endoplasmic reticulum) stress, to block neurodegeneration, and to regulate neuritogenesis. The sigma-1 receptor knock out mouse offered an opportunity to assess possible mechanisms by which the sigma-1 receptor modulates cellular oxidative stress. Nuclear magnetic resonance (NMR) metabolomic screening of the WT (wild type) and sigma-1 KO (knockout) livers was performed to investigate major changes in metabolites that are linked to oxidative stress. Significant changes in protein levels were also identified by two-dimensional (2D) gel electrophoresis and mass spectrometry. Increased levels of the antioxidant protein peroxiredoxin 6 (Prdx6), and the ER chaperone BiP (GRP78) compared to WT littermates were detected. Oxidative stress was measured in WT and sigma-1 KO mouse liver homogenates, in primary hepatocytes and in lung homogenates. Furthermore, sigma-1 receptor mediated activation of the antioxidant response element (ARE) to upregulate NAD(P)H quinone oxidoreductase 1 (NQO1) and superoxide dismutase 1 (SOD1) mRNA expression in COS cells was shown by RT PCR. These novel functions of the sigma-1 receptor were sensitive to well-known sigma ligands via their antagonist/agonist properties.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo , Receptores sigma/metabolismo , Elementos de Resposta/genética , Animais , Células COS , Chlorocebus aethiops , Chaperona BiP do Retículo Endoplasmático , Técnicas de Inativação de Genes , Cobaias , Camundongos , Estresse Oxidativo/genética , Proteômica , Receptores sigma/deficiência , Receptores sigma/genética , Receptor Sigma-1
19.
Curr Pharm Des ; 18(7): 920-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22288412

RESUMO

The sigma-1 receptor is a 26 kDa endoplasmic reticulum resident membrane protein that has been shown to have chaperone activity in addition to its promiscuous binding to pharmacological agents. Ligand binding domain(s) of the sigma-1 receptor have been identified using the E. coli expressed and purified receptor protein and novel radioiodinated azido photoaffinity probes followed by proteolytic and chemical cleavage strategies. The outcome of these experiments indicates that the sigma-1 receptor ligand binding regions are formed primarily by juxtaposition of its second and third hydrophobic domains, regions where the protein shares considerable homology with the fungal enzyme, sterol isomerase that is essential for the biosynthesis of ergosterol. Data indicate that these hydrophobic steroid binding domain like (SBDL) regions on the sigma-1 receptor are likely to interact selectively with N-alkyl amines such as the endogenous sphingolipids and with synthetic N-alkylamines and N-aralkylamines derivatives. A proposed model for the sigma-1 receptor is presented.


Assuntos
Alcanos/metabolismo , Aminas/metabolismo , Sítios de Ligação , Marcadores de Fotoafinidade/metabolismo , Receptores sigma/química , Receptores sigma/metabolismo , Esfingosina/metabolismo , Alcanos/química , Aminas/química , Humanos , Marcadores de Fotoafinidade/química , Esfingosina/análogos & derivados , Esfingosina/química , Receptor Sigma-1
20.
Neuropsychopharmacology ; 37(5): 1192-203, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22169943

RESUMO

The nonmedical use of 'designer' cathinone analogs, such as 4-methylmethcathinone (mephedrone) and 3,4-methylenedioxymethcathinone (methylone), is increasing worldwide, yet little information is available regarding the mechanism of action for these drugs. Here, we employed in vitro and in vivo methods to compare neurobiological effects of mephedrone and methylone with those produced by the structurally related compounds, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine. In vitro release assays using rat brain synaptosomes revealed that mephedrone and methylone are nonselective substrates for plasma membrane monoamine transporters, similar to MDMA in potency and selectivity. In vivo microdialysis in rat nucleus accumbens showed that i.v. administration of 0.3 and 1.0 mg/kg of mephedrone or methylone produces dose-related increases in extracellular dopamine and serotonin (5-HT), with the magnitude of effect on 5-HT being greater. Both methcathinone analogs were weak motor stimulants when compared with methamphetamine. Repeated administrations of mephedrone or methylone (3.0 and 10.0 mg/kg, s.c., 3 doses) caused hyperthermia but no long-term change in cortical or striatal amines, whereas similar treatment with MDMA (2.5 and 7.5 mg/kg, s.c., 3 doses) evoked robust hyperthermia and persistent depletion of cortical and striatal 5-HT. Our data demonstrate that designer methcathinone analogs are substrates for monoamine transporters, with a profile of transmitter-releasing activity comparable to MDMA. Dopaminergic effects of mephedrone and methylone may contribute to their addictive potential, but this hypothesis awaits confirmation. Given the widespread use of mephedrone and methylone, determining the consequences of repeated drug exposure warrants further study.


Assuntos
Proteínas de Membrana Transportadoras , Metanfetamina/análogos & derivados , Núcleo Accumbens/efeitos dos fármacos , 1-Metil-4-fenilpiridínio/farmacocinética , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Eletroquímica , Alucinógenos/farmacologia , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Masculino , Metanfetamina/química , Metanfetamina/farmacologia , Microdiálise/métodos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacocinética , Sinaptossomos/efeitos dos fármacos , Fatores de Tempo , Trítio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...