Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 89(21): 11214-11218, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28972369

RESUMO

We present a new high-throughput platform for studying titanium dioxide (TiO2) photocatalytic oxidation reactions by performing reactions on a TiO2-coated surface, followed by direct analysis of oxidation products from the surface by desorption electrospray ionization mass spectrometry (DESI-MS). For this purpose, we coated a round glass wafer with photocatalytically active anatase-phase TiO2 using atomic layer deposition. Approximately 70 aqueous 1 µL samples can be injected onto the rim of the TiO2-coated glass wafer, before the entire wafer is exposed to UV irradiation. After evaporation of water, the oxidation products can be directly analyzed from the sample spots by DESI-MS, using a commercial rotating sample platform. The method was shown to provide fast photocatalytic oxidation reactions and analysis with throughput of about four samples per minute. The feasibility of the method was examined for mimicking phase I metabolism reactions of amodiaquine, buspirone and verapamil. Their main photocatalytic reaction products were mostly similar to the products observed earlier in TiO2 photocatalysis and in in vitro phase I metabolism assays performed using human liver microsomes.


Assuntos
Amodiaquina/química , Buspirona/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Titânio/química , Verapamil/química , Catálise , Oxirredução , Fotoquímica/métodos , Titânio/efeitos da radiação , Raios Ultravioleta
2.
J Am Chem Soc ; 138(24): 7452-5, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27268440

RESUMO

Protein phosphorylation has a key role in cell regulation. Oxidation of proteins, in turn, is related to many diseases and to aging, but the effects of phosphorylation on the oxidation of proteins and peptides have been rarely studied. The aim of this study was to examine the mechanistic effect of phosphorylation on peptide oxidation induced by titanium dioxide photocatalysis. The effect of phosphorylation was compared between nonphosphorylated and tyrosine phosphorylated peptides using electrospray tandem mass spectrometry. We observed that tyrosine was the most preferentially oxidized amino acid, but the oxidation reaction was significantly inhibited by its phosphorylation. The study also shows that titanium dioxide photocatalysis provides a fast and easy method to study oxidation reactions of biomolecules, such as peptides.


Assuntos
Fosfopeptídeos/química , Titânio/química , Tirosina/química , Raios Ultravioleta , Catálise , Radical Hidroxila/química , Oxirredução , Fosforilação , Titânio/efeitos da radiação
3.
Eur J Pharm Sci ; 83: 36-44, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26690045

RESUMO

The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off.


Assuntos
Buspirona/química , Cumarínicos/química , Promazina/química , Testosterona/química , Titânio/química , Buspirona/metabolismo , Catálise , Cumarínicos/metabolismo , Remoção de Radical Alquila , Eletroquímica , Humanos , Hidrogenação , Hidroxilação , Ferro/química , Microssomos Hepáticos/metabolismo , Oxirredução , Promazina/metabolismo , Testosterona/metabolismo , Titânio/efeitos da radiação , Raios Ultravioleta
4.
Eur J Pharm Sci ; 65: 45-55, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25220585

RESUMO

The aim of this study was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for oxidation of anabolic steroids and for imitation of their phase I metabolism. The photocatalytic reaction products of five anabolic steroids were compared to their phase I in vitro metabolites produced by human liver microsomes (HLM). The same main reaction types - hydroxylation, dehydrogenation and combination of these two - were observed both in TiO2 photocatalysis and in microsomal incubations. Several isomers of each product type were formed in both systems. Based on the same mass, retention time and similarity of the product ion spectra, many of the products observed in HLM reactions were also formed in TiO2 photocatalytic reactions. However, products characteristic to only either one of the systems were also formed. In conclusion, TiO2 photocatalysis is a rapid, simple and inexpensive method for imitation of phase I metabolism of anabolic steroids and production of metabolite standards.


Assuntos
Desintoxicação Metabólica Fase I/fisiologia , Titânio/metabolismo , Catálise , Humanos , Hidroxilação/fisiologia , Microssomos Hepáticos/metabolismo , Oxirredução , Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...