Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(4): e3553, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031661

RESUMO

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys-His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein-peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 µM, respectively. A liquid chromatography-MS (LC-MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 µM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.


Assuntos
COVID-19 , Peptídeo Hidrolases , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Simulação de Dinâmica Molecular
2.
RSC Adv ; 13(34): 23819-23828, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37564256

RESUMO

Hydrazone-hydrazide-based linkers perform a crucial role in environmental as well as biological fields. Such linkers are employed to detect exact metal ions at a minute level; hence, numerous probes are available. Even though thiophene-based molecules have a unique position in the medicinal arena, only very few chemosensors are reported based on such a moiety. In this current work, a novel hydrazide-hydrazone-based fluorogenic molecule 5-bromo-2-hydroxy-N'-[(1E)-1-(thiophen-2-yl)ethylidene]benzohydrazide (L) has been successfully designed and synthesized. The sensing studies of L demonstrated a ratio metric as well as turn-on-enhanced fluorescence and colorimetric response toward Fe3+ and Cu2+ ions, respectively and it was observed to be insensitive toward various metal ions. The Job plots revealed that the binding stoichiometry of L and metal ions is 2 : 1. In addition, density functional theory (DFT) results strongly suggested that L can be used as a powerful colorimetric sensor for the detection of Cu2+ ions. In vitro antimicrobial activities of L were evaluated by disk diffusion and results revealed good antibacterial activities against E. coli. Further, molecular docking was executed with DNA gyrase (PDB ID: 1KZN) of E. coli and the calculated interaction energy value was found to be -7.7 kcal mol-1. Finally, molecular docking, fluorescence, colorimetry and the HOMO-LUMO energy gap of the compound can provide new insights into developing drugs and detecting metals in biomolecules.

3.
Toxicol Res (Camb) ; 12(3): 355-368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397928

RESUMO

The nature of the binding of mercurials (organic and inorganic) and their subsequent transformations in biological systems is a matter of great debate as several different hypotheses have been proposed and none of them has been conclusively proven to explain the characteristics of Hg binding with the proteins. Thus, the chemical nature of Hg-protein binding through the possible transportation mechanism in living tissues is critically reviewed herein. Emphasis is given to the process of transportation, and binding of Hg species with selenol-containing biomolecules that are appealing for toxicological studies as well as the advancement of environmental and biological research.

4.
RSC Adv ; 12(51): 32853-32884, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425156

RESUMO

The lack of high-functioning p-type semiconductor oxide material is one of the critical challenges that face the widespread performance of transparent and flexible electronics. Cu x O nanostructured thin films are potentially appealing materials for such applications because of their innate p-type semi-conductivity, transparency, non-toxicity, abundant availability, and low-cost fabrication. This review summarizes current research on Cu x O nanostructured thin films deposited by the SILAR technique. After a brief introduction to the advantages of Cu x O semiconductor material, diverse approaches for depositing and growing such thin films are discussed. SILAR is one of the simplest deposition techniques in terms of better flexibility of the substrate choice, the capability of large-area fabrication, budget-friendly, deposition of stable and adherent film, low processing temperature for the film fabrication as well as reproducibility. In addition, various fabrication parameters such as types of copper salts, pH of precursors, number of cycles during immersion, annealing of as-deposited films, doping by diverse dopants, and growth temperature affect the rate of fabrication with the structural, electrical, and optical properties of Cu x O nanostructured thin films, which led the technique unique to study extensively. This review will include the recent progress that has recently been made in different aspects of Cu x O processed by the SILAR. It will describe the theory, mechanism, and factors affecting SILAR-deposited Cu x O. Finally, conclusions and perspectives concerning the use of Cu x O materials in optoelectronic devices will be visualized.

5.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268756

RESUMO

Polytopic organic ligands with hydrazone moiety are at the forefront of new drug research among many others due to their unique and versatile functionality and ease of strategic ligand design. Quantum chemical calculations of these polyfunctional ligands can be carried out in silico to determine the thermodynamic parameters. In this study two new tritopic dihydrazide ligands, N'2, N'6-bis[(1E)-1-(thiophen-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L1) and N'2, N'6-bis[(1E)-1-(1H-pyrrol-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L2) were successfully prepared by the condensation reaction of pyridine-2,6-dicarboxylic hydrazide with 2-acetylthiophene and 2-acetylpyrrole. The FT-IR, 1H, and 13C NMR, as well as mass spectra of both L1 and L2, were recorded and analyzed. Quantum chemical calculations were performed at the DFT/B3LYP/cc-pvdz/6-311G+(d,p) level of theory to study the molecular geometry, vibrational frequencies, and thermodynamic properties including changes of ∆H, ∆S, and ∆G for both the ligands. The optimized vibrational frequency and (1H and 13C) NMR obtained by B3LYP/cc-pvdz/6-311G+(d,p) showed good agreement with experimental FT-IR and NMR data. Frontier molecular orbital (FMO) calculations were also conducted to find the HOMO, LUMO, and HOMO−LUMO gaps of the two synthesized compounds. To investigate the biological activities of the ligands, L1 and L2 were tested using in vitro bioassays against some Gram-negative and Gram-positive bacteria and fungus strains. In addition, molecular docking was used to study the molecular behavior of L1 and L2 against tyrosinase from Bacillus megaterium. The outcomes revealed that both L1 and L2 can suppress microbial growth of bacteria and fungi with variable potency. The antibacterial activity results demonstrated the compound L2 to be potentially effective against Bacillus megaterium with inhibition zones of 12 mm while the molecular docking study showed the binding energies for L1 and L2 to be −7.7 and −8.8 kcal mol−1, respectively, with tyrosinase from Bacillus megaterium.


Assuntos
Hidrazonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...