Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611791

RESUMO

Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa) and wild blueberry (Vaccinium angustifolium) extracts have been reported recently. However, their anti-inflammatory activities and the mechanism of action against ALI are not fully elucidated. Thus, the present study aims to understand the mechanism of the anti-inflammatory activity of sea cucumber and wild blueberry extracts in the context of ALI. Experimental ALI was induced via intranasal lipopolysaccharide (LPS) instillation in C57BL/6 mice and the anti-inflammatory properties were determined by cytokine analysis, histological examination, western blot, and qRT-PCR. The results showed that oral supplementation of sea cucumber extracts repressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby downregulating the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF) in the lung tissue and in the plasma. Wild blueberry extracts also suppressed the expression of IL-4. Furthermore, the combination of sea cucumber and wild blueberry extracts restrained MAPK signaling pathways by prominent attenuation of phosphorylation of NF-κB, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) while the levels of pro-inflammatory cytokines were significantly suppressed. Moreover, there was a significant and synergistic reduction in varying degrees of ALI lesions such as distorted parenchyma, increased alveoli thickness, lymphocyte and neutrophil infiltrations, fibrin deposition, pulmonary emphysema, pneumonia, intra-alveolar hemorrhage, and edema. The anti-inflammatory effect of the combination of sea cucumber and wild blueberry extracts is associated with suppressing MAPK and NF-κB signaling pathways, thereby significantly reducing cytokine storm in LPS-induced experimental ALI.


Assuntos
Lesão Pulmonar Aguda , Mirtilos Azuis (Planta) , Extratos Vegetais , Pepinos-do-Mar , Camundongos , Animais , Camundongos Endogâmicos C57BL , NF-kappa B , Sistema de Sinalização das MAP Quinases , Lipopolissacarídeos/toxicidade , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas , MAP Quinases Reguladas por Sinal Extracelular , Interleucina-1beta , Anti-Inflamatórios/farmacologia
2.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338453

RESUMO

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid ß-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proantocianidinas , Probióticos , Simbióticos , Humanos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/etiologia , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Fígado , Probióticos/uso terapêutico
3.
Oxid Med Cell Longev ; 2024: 7944378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268969

RESUMO

Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.


Assuntos
Neoplasias Ósseas , Microalgas , Humanos , Animais , Cães , Inonotus , Clorofila , Etanol , Mamíferos , Álcoois Açúcares , Água
4.
Curr Res Toxicol ; 5: 100137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046279

RESUMO

Cancer has become the second leading cause of death in the world. Integrative cancer therapy management is continuously evolving to enhance treatment outcomes. Chaga mushroom (Inonotus obliquus) is a parasitic fungus acclaimed to contain pharmaceutical and nutraceutical value in the fight against cancer. In particular, triterpenoid constituents derived from Chaga mushrooms have been recognized for their anti-cancer activity after distinguished cytotoxicity was repeatedly observed in cancer cells treated in vitro with lipophilic fractions of extract compared to aqueous ones. Studies that investigate the anti-cancer activity of Chaga mushroom triterpenoids are reviewed in this article to determine which cancer cell lines demonstrate the greatest susceptibility to them while highlighting the structure-activity relationships that are involved. Triterpenoid supplementation as an adjunct to cancer treatment may be a viable option as inotodiol and 3-ß-22 α-dihydroxylanosta-8, 25-diene-24-one have been shown to exhibit anti-cancer activity similar to that of conventional drugs. Advances in addressing bioavailability challenges are also included in this review as studies include in vivo components.

5.
Crit Rev Anal Chem ; : 1-22, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850880

RESUMO

Replacing conventional solvents with deep eutectic solvents (DES) has shown promising effects on the extraction yield of (poly)phenols. DES can be combined with ultrasound-assisted extraction (UAE) to further increase the extraction efficiency of (poly)phenols from natural resources compared to conventional methods. This review discusses the factors associated with DES (composition, solvent-to-sample ratio, extraction duration, and temperature) and UAE (ultrasound frequency, power, intensity, and duty cycle) methods that influence the extraction of (poly)phenols and informs future improvements required in the optimization of the extraction process. For the optimum (poly)phenol extraction from natural resources, the following parameters shall be considered: ultrasound frequency should be in the range of 20-50 kHz, ultrasound intensity in the range of 60-120 W/cm2, ultrasound duty cycle in the range of 40-80%, ultrasound duration for 10-30 minutes, and ultrasound temperature for 25-50 °C. Among the reported DES systems, choline chloride with glycerol or lactic acid, with a solvent-to-sample mass ratio of 10-30:1 shown to be effective. The solvent composition and solvent-to-sample mass ratio should be selected according to the target compound and the source material. However, the high viscosity of DES is among the major limitations. Optimizing these factors can help to increase the yield of extracted (poly)phenols and their applications.

6.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834020

RESUMO

The eradication of cancer stem cells (CSCs) is vital to successful cancer treatment and overall disease-free survival. CSCs are a sub-population of cells within a tumor that are defined by their capacity for continuous self-renewal and recapitulation of new tumors, demonstrated in vitro through spheroid formation. Flavonoids are a group of phytochemicals with potent anti-oxidant and anti-cancer properties. This paper explores the impact of the flavonoid precursor phloridzin (PZ) linked to the ω-3 fatty acid docosahexaenoate (DHA) on the growth of MCF-7 and paclitaxel-resistant MDA-MB-231-TXL breast cancer cell lines. Spheroid formation assays, acid phosphatase assays, and Western blotting were performed using MCF-7 cells, and the cell viability assays, Annexin-V-488/propidium iodide (PI) staining, and 7-aminoactinomycin D (7-AAD) assays were performed using MDA-MB-231-TXL cells. PZ-DHA significantly reduced spheroid formation, as well as the metabolic activity of MCF-7 breast cancer cells in vitro. Treatment with PZ-DHA also suppressed the metabolic activity of MDA-MB-231-TXL cells and led to apoptosis. PZ-DHA did not have an observable effect on the expression of the drug efflux transporters ATP-binding cassette super-family G member 2 (ABCG2) and multidrug resistance-associated protein 1 (MRP1). PZ-DHA is a potential treatment avenue for chemo-resistant breast cancer and a possible novel CSC therapy. Future pre-clinical studies should explore PZ-DHA as a chemo-preventative agent.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/metabolismo , Paclitaxel/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Florizina/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
7.
Sci Rep ; 13(1): 17206, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821510

RESUMO

Obesity is a state of metabolic dysfunction that can lead to dyslipidemia and impaired glucose homeostasis. Apple polyphenols have been shown to ameliorate dyslipidemia/metabolic dysfunction in humans. The influence of apple (poly)phenols on energy metabolism in high-fat (HF) diet-induced obese mice remains controversial. This study examined the effect of dietary supplementation of (poly)phenol-rich 'Daux Belan' apple (DB; 6.2 mg gallic acid equivalence (GAE)/mouse/day; 0.15% (poly)phenol) in the form of freeze-dried powder on glucose and lipid metabolism in male HF-fed C57BL/6NCrl mice, in comparison to low-(poly)phenol-containing 'Zestar' apple (Z; 0.4 mg GAE/mouse/day). Obesity, glucose intolerance, hypertriglyceridemia, and hepatic lipid vacuolation were induced by HF feeding while circulating cholesterol levels remained unchanged. DB apple supplementation did not protect against HF-induced body weight gain, hyperglycemia, hepatic triglyceride level elevation, and hepatic lipid vacuolation at the tested dosage. Future studies should be conducted with increased DB dosage and employ apple (poly)phenols supplemented in the form of extracts or sugar-free powder.


Assuntos
Dislipidemias , Intolerância à Glucose , Humanos , Masculino , Camundongos , Animais , Intolerância à Glucose/etiologia , Intolerância à Glucose/prevenção & controle , Intolerância à Glucose/metabolismo , Fenol/metabolismo , Camundongos Endogâmicos C57BL , Pós/farmacologia , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Suplementos Nutricionais , Fenóis/farmacologia , Fenóis/metabolismo , Dislipidemias/etiologia , Dislipidemias/prevenção & controle , Dislipidemias/metabolismo , Lipídeos/farmacologia
8.
Mar Drugs ; 21(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233456

RESUMO

Frondosides are the major saponins (triterpene glycosides) of the North Atlantic sea cucumber (Cucumaria frondosa). Frondosides possess amphiphilic characteristics due to the presence of various hydrophilic sugar moieties and hydrophobic genin (sapogenin). Saponins are abundant in holothurians, including in sea cucumbers that are widely distributed across the northern part of the Atlantic Ocean. Over 300 triterpene glycosides have been isolated, identified, and categorized from many species of sea cucumbers. Furthermore, specific saponins from sea cucumbers are broadly classified on the basis of the fron-dosides that have been widely studied. Recent studies have shown that frondoside-containing extracts from C. frondosa exhibit anticancer, anti-obesity, anti-hyperuricemic, anticoagulant, antioxidant, antimicrobial, antiangiogenic, antithrombotic, anti-inflammatory, antitumor, and immunomodulatory activities. However, the exact mechanism(s) of action of biological activities of frondosides is not clearly understood. The function of some frondosides as chemical defense molecules need to be understood. Therefore, this review discusses the different frondosides of C. frondosa and their potential therapeutic activities in relation to the postulated mechanism(s) of action. In addition, recent advances in emerging extraction techniques of frondosides and other saponins and future perspectives are discussed.


Assuntos
Cucumis sativus , Saponinas , Pepinos-do-Mar , Triterpenos , Animais , Pepinos-do-Mar/química , Saponinas/química , Glicosídeos/química , Triterpenos/química
9.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047063

RESUMO

Cancer is an escalating global issue, with 19.3 million new cases and 9.9 million deaths in 2020. Therefore, effective approaches to prevent cancer are urgently required. Diet plays a significant role in determining cancer risk. Nutrients and food bioactives influence specific signaling pathways in the body. Recently, there have been significant advances in cancer prevention research through nutrigenomics or with the effects of dietary components on the genome. Google Scholar, PubMed, and Scopus databases were used to search for peer-reviewed articles between 2017 and 2023. Criteria used were vitamins, minerals, tumors, cancer, genes, inflammation, signaling pathways, and nutrigenomics. Among the total of 1857 articles available, the highest relevant 90 articles that specifically discussed signaling pathways and genes on cancer cell lines and human cancer patients were selected and reviewed. Food sources are rich in antioxidant micronutrients, which are effective in activating or regulating signaling pathways involved in pathogenesis and cancer therapy by activating enzymes such as mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K). The micronutrients are involved in the regulation of ß-catenin (WNT/ß-catenin) including mutations in Kras and epidermal growth factor receptor (EGFR) alongside inhibition of the NF-kB pathway. The most common mechanism of cancer prevention by these micronutrients is their antioxidative, anti-inflammation, and anti-apoptosis effects. This review discusses how nutrigenomics is essential and beneficial for developing cancer prevention and treatment approaches.


Assuntos
Neoplasias , Vitaminas , Humanos , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Micronutrientes/farmacologia , Micronutrientes/uso terapêutico , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Vitamina A , Vitamina K , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/prevenção & controle
10.
Toxicol Lett ; 379: 35-47, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36935082

RESUMO

Polymeric proanthocyanidins (P-PAC) induced hepatotoxicity in C57BL/6 mice. Mice were supplemented with P-PAC alone or with a mixture of probiotic bacteria (PB), Lactobacillus, Bifidobacterium, and Akkermansia muciniphila for 14 consecutive days. The liver tissues of sacrificed mice were analyzed by mass spectrometry to identify and quantify the P-PAC metabolites. Potential P-PAC metabolites, 2-hydroxyphenylacetic acid and pyrocatechol were detected in higher concentrations and 4-hydroxybenzoic acid was detected exclusively in the mice supplemented with P-PAC and PB. Supplementation with P-PAC alone or with PB caused no shift in the α-diversity of mice gut microbiota. P-PAC induced nonalcoholic steatohepatitis in mice through increasing liver exposure to intestinal bacterial lipopolysaccharides by reducing expression of gut epithelial tight junction proteins, claudin-3 and occludin. Lipopolysaccharide concentrations in the livers of mice supplemented with P-PAC were significantly high compared to the control mice. Furthermore, P-PAC downregulated the expressions of claudin-3 and claudin-4 tight junction proteins in cultured Caco-2 cell monolayers. PB biotransformed P-PAC into bioavailable metabolites and potentially reduced the toxicity of P-PAC. The toxicity of P-PAC and their synbiotics need to be critically evaluated for the safety of human consumption.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Proantocianidinas , Humanos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Proantocianidinas/farmacologia , Células CACO-2 , Claudina-3 , Camundongos Endogâmicos C57BL , Bactérias , Proteínas de Junções Íntimas , Epitélio/metabolismo
11.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835090

RESUMO

Cancer is one of the leading causes of death worldwide. Chemotherapy and radiation therapy are currently providing the basis for cancer therapies, although both are associated with significant side effects. Thus, cancer prevention through dietary modifications has been receiving growing interest. The potential of selected flavonoids in reducing carcinogen-induced reactive oxygen species (ROS) and DNA damage through the activation of nuclear factor erythroid 2 p45 (NF-E2)-related factor (Nrf2)/antioxidant response element (ARE) pathway was studied in vitro. Dose-dependent effects of pre-incubated flavonoids on pro-carcinogen 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone (NNKAc)-induced ROS and DNA damage in human bronchial epithelial cells were studied in comparison to non-flavonoids. The most effective flavonoids were assessed for the activation of Nrf2/ARE pathway. Genistein, procyanidin B2 (PCB2), and quercetin significantly suppressed the NNKAc-induced ROS and DNA damage. Quercetin significantly upregulated the phosphorylated protein kinase B/Akt. PCB2 significantly upregulated the activation of Nrf2 and Akt through phosphorylation. Genistein and PCB2 significantly upregulated the phospho-Nrf2 nuclear translocation and catalase activity. In summary, genistein and PCB2 reduced the NNKAc-induced ROS and DNA damage through the activation of Nrf2. Further studies are required to understand the role of dietary flavonoids on the regulation of the Nrf2/ARE pathway in relation to carcinogenesis.


Assuntos
Carcinógenos , Células Epiteliais , Genisteína , Proantocianidinas , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Humanos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Carcinógenos/farmacologia , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Flavonoides/farmacologia , Genisteína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proantocianidinas/farmacologia
12.
ScientificWorldJournal ; 2022: 9901018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193042

RESUMO

Food-borne illnesses are a significant concern for consumers, the food industry, and food safety authorities. Natural preservatives are very crucial for enhancing food safety and shelf life. Therefore, this review aimed to assess the literature regarding the potential of natural preservatives to enhance food safety and extend the shelf life of food products. The review paper indicated that natural antimicrobial agents that inhibit bacterial and fungal growth for better quality and shelf life have been of considerable interest in recent years. Natural antimicrobials are mainly extracted and isolated as secondary metabolites of plants, animals, and microorganisms. Plants, especially herbs and spices, are given more attention as a source of natural antimicrobials. Microorganisms used in food fermentation also produce different antimicrobial metabolites, including organic acids, hydrogen peroxide, and diacetyl, in addition to bacteriocins. Products of animal origin, such as tissues and milk, contain different antimicrobial agents. Natural antimicrobials are primarily extracted and purified before utilization for food product development. The extraction condition and purification of natural preservatives may change their structure and affect their functionality. Selecting the best extraction method coupled with minimal processing such as direct mechanical extraction seems to preserve active ingredients. The activity of natural antimicrobials could also be influenced by the source, time of harvesting, and stage of development. The effectiveness of natural antimicrobial compounds in food applications is affected by different factors, including food composition, processing method, and storage conditions. Natural antimicrobials are safe because they can limit microbial resistance and meet consumers' demands for healthier foods.


Assuntos
Anti-Infecciosos , Bacteriocinas , Animais , Antibacterianos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Diacetil , Conservação de Alimentos , Conservantes de Alimentos/farmacologia , Inocuidade dos Alimentos , Peróxido de Hidrogênio
13.
Pharmaceutics ; 14(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297428

RESUMO

BACKGROUND: Carvacrol, a mono-terpenoid phenol found in herbs, such as oregano and thyme, has excellent antibacterial properties against Streptococcus pyogenes. However, its mechanism of bactericidal activity on S. pyogenes has not been elucidated. OBJECTIVES: This study investigated the bactericidal mechanism of carvacrol using three strains of S. pyogenes. METHODS: Flow cytometry (FCM) experiments were conducted to determine carvacrol's membrane permeabilization and cytoplasmic membrane depolarization activities. Protoplasts of S. pyogenes were used to investigate carvacrol's effects on the membrane, followed by gel electrophoresis. The carvacrol-treated protoplasts were examined by transmission electron microscopy (TEM) to observe ultrastructural morphological changes. The fluidity of the cell membrane was measured by steady-state fluorescence anisotropy. Thin-layer chromatographic (TLC) profiling was conducted to study the affinity of carvacrol for membrane phospholipids. RESULTS: Increased membrane permeability and decreased membrane potential from FCM and electron microscopy observations revealed that carvacrol killed the bacteria primarily by disrupting membrane integrity, leading to whole-cell lysis. Ultra-structural morphological changes in the membrane induced by carvacrol over a short period were confirmed using the S. pyogenes protoplast and membrane isolate models in vitro. In addition, changes in the other biophysical properties of the bacterial membrane, including concentration- and time-dependent increased fluidity, were observed. TLC experiments showed that carvacrol preferentially interacts with membrane phosphatidylglycerol (P.G.), phosphatidylethanolamine (P.E.), and cardiolipins (CL). CONCLUSIONS: Carvacrol exhibited rapid bactericidal action against S. pyogenes by disrupting the bacterial membrane and increasing permeability, possibly due to affinity with specific membrane phospholipids, such as P.E., P.G., and CL. Therefore, the bactericidal concentration of carvacrol (250 µg/mL) could be used to develop safe and efficacious natural health products for managing streptococcal pharyngitis or therapeutic applications.

14.
J Xenobiot ; 12(4): 289-306, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36278757

RESUMO

The highly contagious coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic and public health emergency as it has taken the lives of over 5.7 million in more than 180 different countries. This disease is characterized by respiratory tract symptoms, such as dry cough and shortness of breath, as well as other symptoms, including fever, chills, and fatigue. COVID-19 is also characterized by the excessive release of cytokines causing inflammatory injury to the lungs and other organs. It is advised to undergo precautionary measures, such as vaccination, social distancing, use of masks, hygiene, and a healthy diet. This review is aimed at summarizing the pathophysiology of COVID-19 and potential biologically active compounds (bioactive) found in plants and plant food. We conclude that many plant food bioactive compounds exhibit antiviral and anti-inflammatory properties and support in attenuating organ damage due to reduced cytokine release and improving the recovery process from COVID-19 infection.

15.
Oxid Med Cell Longev ; 2022: 1422929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124088

RESUMO

Anthocyanins are known for their therapeutic efficacy for many human diseases, including cancer. After ingestion, anthocyanins degrade due to oxidation and enzymatic breakdown, resulting in reduced therapeutic efficacy. Direct delivery to target tissues and entrapment of anthocyanins increases their stability, bioavailability, and therapeutic efficacy. The objective of the present study was to develop a direct delivery system of anthocyanins into pulmonary tissues via encapsulated nanocarriers. A cyanidin-3-O-glucoside (C3G)-rich anthocyanin extract was prepared from well-ripened haskap (Lonicera caerulea L.) berries (HB) and encapsulated in three different polymeric nanocarrier systems: polyethylene glycol-poly(lactide-co-glycolide), maltodextrin, and carboxymethyl chitosan (CMC). The anthocyanin encapsulation efficiency was significantly higher in CMC (10%) than in the other two polymers. The cytotoxicity and cytoprotective effect of HB anthocyanin-encapsulated CMC (HB-CMC, 4 µg of C3G equivalent anthocyanin in 2 mg/mL nanoparticle) and anthocyanin-free CMC (E-CMC, 2 mg/mL) were tested for cytotoxicity using human normal lung epithelial BEAS-2B cells. The CMC nanoparticles were not cytotoxic for BEAS-2B cells. The HB-CMC nanoparticles reduced carcinogen-induced oxidative stress in BEAS-2B cells and restored the expression of superoxide dismutase and glutathione peroxidase enzymes. The HB-CMC nanoparticles also reduced carcinogen-induced DNA single-strand breaks and alkaline-labile sites but not the double-strand breaks. The E-CMC, HB-CMC (28 µg C3G equivalent/mouse/day for six days), or the same dose of free HB anthocyanin was administered to A/JCr mice through a nose-only passive inhalation device. C3G and its metabolites, cyanidin, peonidin-3-O-glucoside, and cyanidin-3-O-glucuronide, were detected by UPLC/ESI/Q-TOF-MS in the lungs of mice after one hour of exposure. Therefore, the CMC could be a promising noncytotoxic candidate to encapsulate HB anthocyanin. Direct delivery of anthocyanin to lung tissues enhances tissue retention, slows phase 2 metabolism, and improves therapeutic efficacy.


Assuntos
Quitosana , Nanopartículas , Animais , Antocianinas/metabolismo , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Carcinógenos , DNA , Glucosídeos , Glucuronídeos , Glutationa Peroxidase , Humanos , Pulmão/metabolismo , Camundongos , Extratos Vegetais , Superóxido Dismutase
16.
Antioxidants (Basel) ; 11(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35883898

RESUMO

Antioxidants can be used as radioprotectants to reduce DNA damage due to exposure to radiation that could result in malignancies, including lung cancer. Mortality rates are consistently higher in lung cancer, which is usually diagnosed at later stages of cancer development and progression. In this preliminary study, we examined the potential of an antioxidant formulation (AOX2) to reduce DNA damage using a cell model of human normal bronchial epithelial cells (BEAS-2B). Cells were exposed to γ-irradiation or smoke-related hydrocarbon 4[(acetoxymethyl)nitrosamino]-1 (3-pyridyl) 1-butanone (NNKOAc) to induce DNA damage. We monitored intracellular reactive oxygen species (ROS) levels and evidence of genotoxic damage including DNA fragmentation ELISA, γ-H2AX immunofluorescence, and comet assays. Pre-incubation of the cells with AOX2 before exposure to γ-irradiation and NNKOAc significantly reduced DNA damage. The dietary antioxidant preparation AOX2 significantly reduced the induction of the tumor suppressor protein p53 and DNA damage-associated γ-H2AX phosphorylation by radiation and the NNKOAc treatment. Thus, AOX2 has the potential to act as a chemoprotectant by lowering ROS levels and DNA damage caused by exposure to radiation or chemical carcinogens.

17.
Microb Pathog ; 169: 105684, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863588

RESUMO

Streptococcus pyogenes is a leading cause of chronic and acute infections, including streptococcus pharyngitis. Biofilm formation by S. pyogenes can cause tolerance against antibiotics. Although penicillin remains the first choice of antibiotic for S. pyogenes, alternative approaches have gained interest due to treatment failures and hypersensitive individuals. Carvacrol is a monoterpenoid from herbal plants with selective biocidal activity on S. pyogenes. Therefore, the present study reveals the efficacy of carvacrol in inhibiting and eradicating S. pyogenes biofilm. The antibiofilm activities were investigated using colorimetric assays, microscopy, cell surface hydrophobicity, gene expression analysis, and in-silico analysis. Carvacrol also showed a minimum biofilm inhibitory concentration (MBIC) against S. pyogenes of 125 µg/mL. The electron microscopic and confocal microscopic analyses revealed a dose-dependent suppression of biofilm formation and a reduction in the biofilm thickness by carvacrol. Carvacrol also inhibited the biofilm-associated virulence factors such as cell surface hydrophobicity. Quantitative real-time polymerase chain reaction analysis showed the downregulation of speB, srtB, luxS, covS, dltA, ciaH, and hasA genes involved in biofilm formation. The results suggested the therapeutic potential of carvacrol against biofilm-associated streptococcal infections.


Assuntos
Biofilmes , Streptococcus pyogenes , Antibacterianos/farmacologia , Cimenos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Percepção de Quorum/genética , Streptococcus pyogenes/genética
18.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807309

RESUMO

The objective of this work was to investigate the antidiabetic, antiglycation, and antioxidant potentials of ethanolic extract of seeds of Brazilian Passiflora edulis fruits (PESE), a major by-product of the juice industry, and piceatannol (PIC), one of the main phytochemicals of PESE. PESE, PIC, and acarbose (ACB) exhibited IC50 for alpha-amylase, 32.1 ± 2.7, 85.4 ± 0.7, and 0.4 ± 0.1 µg/mL, respectively, and IC50 for alpha-glucosidase, 76.2 ± 1.9, 20.4 ± 7.6, and 252 ± 4.5 µg/mL, respectively. The IC50 of PESE, PIC, and sitagliptin (STG) for dipeptidyl-peptidase-4 (DPP-4) was 71.1 ± 2.6, 1137 ± 120, and 0.005 ± 0.001 µg/mL, respectively. PESE and PIC inhibited the formation of advanced glycation end-products (AGE) with IC50 of 366 ± 1.9 and 360 ± 9.1 µg/mL for the initial stage and 51.5 ± 1.4 and 67.4 ± 4.6 µg/mL for the intermediate stage of glycation, respectively. Additionally, PESE and PIC inhibited the formation of ß-amyloid fibrils in vitro up to 100%. IC50 values for 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity of PESE and PIC were 20.4 ± 2.1, and 6.3 ± 1.3 µg/mL, respectively. IC50 values for scavenging hypochlorous acid (HOCl) were similar in PESE, PIC, and quercetin (QCT) with values of 1.7 ± 0.3, 1.2 ± 0.5, and 1.9 ± 0.3 µg/mL, respectively. PESE had no cytotoxicity to the human normal bronchial epithelial (BEAS-2B), and alpha mouse liver (AML-12) cells up to 100 and 50 µg/mL, respectively. However, 10 µg/mL of the extract was cytotoxic to non-malignant breast epithelial cells (MCF-10A). PESE and PIC were found to be capable of protecting cultured human cells from the oxidative stress caused by the carcinogen NNKOAc at 100 µM. The in vitro evidence of the inhibition of alpha-amylase, alpha-glucosidase, and DPP-4 enzymes as well as antioxidant and antiglycation activities, warrants further investigation of the antidiabetic potential of P. edulis seeds and PIC.


Assuntos
Passiflora , Animais , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Sementes , Estilbenos , alfa-Amilases , alfa-Glucosidases
19.
Nutrients ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35276864

RESUMO

Pharyngitis is an inflammation of the pharynx caused by viral, bacterial, or non-infectious factors. In the present study, the anti-inflammatory efficacy of carvacrol was assessed using an in vitro model of streptococcal pharyngitis using human tonsil epithelial cells (HTonEpiCs) induced with Streptococcus pyogenes cell wall antigens. HTonEpiCs were stimulated by a mixture of lipoteichoic acid (LTA) and peptidoglycan (PGN) for 4 h followed by exposure to carvacrol for 20 h. Following exposure, interleukin (IL)-6, IL-8, human beta defensin-2 (HBD-2), epithelial-derived neutrophil-activating protein-78 (ENA-78), granulocyte chemotactic protein-2 (GCP-2), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and prostaglandin (PGE2) were measured by enzyme-linked immunosorbent assays (ELISA). The levels of pro-inflammatory cytokines, IL-6, IL-8, ENA-78, and GCP-2 were decreased in a carvacrol dose-dependent manner. The production of HBD-2 was significantly suppressed over 24 h carvacrol treatments. PGE2 and COX-2 levels in the cell suspensions were affected by carvacrol treatment. TNF-α was not detected. The cell viability of all the tested carvacrol concentrations was greater than 80%, with no morphological changes. The results suggest that carvacrol has anti-inflammatory properties, and carvacrol needs to be further assessed for potential clinical or healthcare applications to manage the pain associated with streptococcal pharyngitis.


Assuntos
Tonsila Palatina , Peptidoglicano , Biomarcadores , Parede Celular , Cimenos , Células Epiteliais , Humanos , Lipopolissacarídeos , Peptidoglicano/farmacologia , Ácidos Teicoicos
20.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209151

RESUMO

Conventional extraction methods of proanthocyanidins (PAC) are based on toxic organic solvents, which can raise concerns about the use of extracts in supplemented food and nutraceuticals. Thus, a PAC extraction method was developed for grape seeds (GS) and grape seed powder using food-grade ethanol by optimizing the extraction conditions to generate the maximum yield of PAC. Extraction parameters, % ethanol, solvent: solid (s:s) ratio, sonication time, and temperature were optimized by the central composite design of the response surface method. The yields of PAC under different extraction conditions were quantified by the methylcellulose precipitable tannin assay. The final optimum conditions were 47% ethanol, 10:1 s:s ratio (v:w), 53 min sonication time, and 60 °C extraction temperature. High-performance liquid chromatography analysis revealed the presence of catechin, procyanidin B2, oligomeric and polymeric PAC in the grape seed-proanthocyanidin extracts (GS-PAC). GS-PAC significantly reduced reactive oxygen species and lipid accumulation in the palmitic-acid-induced mouse hepatocytes (AML12) model of steatosis. About 50% of the PAC of the GS was found to be retained in the by-product of wine fermentation. Therefore, the developed ethanol-based extraction method is suitable to produce PAC-rich functional ingredients from grape by-products to be used in supplemented food and nutraceuticals.


Assuntos
Extrato de Sementes de Uva/isolamento & purificação , Extrato de Sementes de Uva/farmacologia , Extração Líquido-Líquido/métodos , Proantocianidinas/isolamento & purificação , Proantocianidinas/farmacologia , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Etanol , Fermentação , Extrato de Sementes de Uva/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Camundongos , Ácido Palmítico/farmacologia , Proantocianidinas/química , Sementes/química , Solventes , Relação Estrutura-Atividade , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...